A QUADRATIC MODEL FOR INVERSE PROFILING - THE ONE-DIMENSIONAL CASE

被引:36
|
作者
BRANCACCIO, A
PASCAZIO, V
PIERRI, R
机构
[1] Dipartimento di Ingegneria, Seconda Universitá di Napoli, Aversa, 81031, via Roma
[2] Istituto di Teoria e Tecnica delle Onde Elettromagnetiche, Istituto Universitario Navale, Napoli, 80133, via Acton
关键词
Inverse profiling - One dimensional - Quadratic model - Quadratic operator;
D O I
10.1163/156939395X00875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a quadratic model for inverse profiling is introduced. It extends the range of validity of the linear (Born) method, and at the same time allows to manage the intrinsic non linearity of the problem. The inversion of the quadratic operator is based on the minimization of a proper defined functional involving both measured data and unknowns. The adopted geometrical approach, already used in the context of phase retrieval in antennas applications, avoids the occurrence of local minima. Numerical experiments, showing the good performances of the proposed method, are also presented.
引用
收藏
页码:673 / 696
页数:24
相关论文
共 50 条
  • [1] One dimensional inverse dielectric profiling of embedded slabs by a quadratic approximation
    Brancaccio, Adriana
    Leone, Giovanni
    Pierri, Rocco
    Soldovieri, Francesco
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2001, 55 (02): : 109 - 117
  • [2] One dimensional inverse dielectric profiling of embedded slabs by a quadratic approximation
    Brancaccio, A
    Leone, G
    Pierri, R
    Soldovieri, F
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2001, 55 (02) : 109 - 117
  • [3] PHASELESS INVERSE SCATTERING IN THE ONE-DIMENSIONAL CASE
    Novikov, R. G.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2015, 3 (01): : 64 - 70
  • [4] Linear One-dimensional Inverse Profiling: the Role of a Reflecting Plane in the Background
    Maisto, Maria A.
    Di Donato, Loreto
    Solimene, Raffaele
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 1149 - 1150
  • [5] Heredity in one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Alvarez, G
    Montoya, F
    PHYSICAL REVIEW E, 1998, 58 (06): : 7214 - 7218
  • [6] One-dimensional quadratic walking solitons
    Schiek, R
    Baek, Y
    Stegeman, GI
    Sohler, W
    OPTICS LETTERS, 1999, 24 (02) : 83 - 85
  • [7] One-dimensional crystals and quadratic residues
    Chamizo, F
    Cordoba, A
    JOURNAL OF NUMBER THEORY, 1997, 65 (01) : 101 - 104
  • [8] One-Dimensional Quadratic Chaotic System and Splicing Model for Image Encryption
    Chen, Chen
    Zhu, Donglin
    Wang, Xiao
    Zeng, Lijun
    ELECTRONICS, 2023, 12 (06)
  • [9] THE STABILITY OF ONE-DIMENSIONAL INVERSE SCATTERING
    DORREN, HJS
    MUYZERT, EJ
    SNIEDER, RK
    INVERSE PROBLEMS, 1994, 10 (04) : 865 - 880
  • [10] ONE-DIMENSIONAL INVERSE PROBLEMS OF ELECTRODYNAMICS
    KHRUSLOV, EY
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (02): : 142 - 151