A QUADRATIC MODEL FOR INVERSE PROFILING - THE ONE-DIMENSIONAL CASE

被引:36
作者
BRANCACCIO, A
PASCAZIO, V
PIERRI, R
机构
[1] Dipartimento di Ingegneria, Seconda Universitá di Napoli, Aversa, 81031, via Roma
[2] Istituto di Teoria e Tecnica delle Onde Elettromagnetiche, Istituto Universitario Navale, Napoli, 80133, via Acton
关键词
Inverse profiling - One dimensional - Quadratic model - Quadratic operator;
D O I
10.1163/156939395X00875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a quadratic model for inverse profiling is introduced. It extends the range of validity of the linear (Born) method, and at the same time allows to manage the intrinsic non linearity of the problem. The inversion of the quadratic operator is based on the minimization of a proper defined functional involving both measured data and unknowns. The adopted geometrical approach, already used in the context of phase retrieval in antennas applications, avoids the occurrence of local minima. Numerical experiments, showing the good performances of the proposed method, are also presented.
引用
收藏
页码:673 / 696
页数:24
相关论文
共 22 条
  • [1] Colton D., Kress R., Inverse Acoustic and Electromagnetic Scattering Theory, (1992)
  • [2] Tikhonov A.N., Goncharsky A.V., Ill-Posed Problems in the Natural Sciences, (1987)
  • [3] Colton D., Paivarinta L., The Uniqueness of a Solution to an Inverse Scattering Problem for Electromagnetic Waves, Arch. Rational Mech. Anal, 119, pp. 59-70, (1992)
  • [4] Glasko V.B., Inverse Problems of Mathematical Physics, (1988)
  • [5] Muller R.K., Kaveh M., Wade G., Reconstruction tomography and application to ultrasonics, Proc. IEEE, 67, 4, pp. 567-587, (1979)
  • [6] Devaney A.J., A computer simulation study of diffraction tomography, IEEE Trans. Biomed. Eng, BME-30, 7, pp. 377-386, (1983)
  • [7] Xia J., Jordan A.K., Kong J.A., Electromagnetic inverse-scattering theory for inhomogeneous dielectrics: The local reflection model, J. Opt. Soc. Am. A, 11, 3, pp. 1081-1086, (1994)
  • [8] Kim Y., Cho N., Yaggard D.L., Time-domain inverse scattering using a nonlinear renormalization technique, J. Electromagnetic Waves and Applic, 4, 2, pp. 99-111, (1990)
  • [9] Kleinman R.E., Van Den Berg P.M., An extended modified gradient technique for profile inversion, Radio Science, 28, 5, pp. 877-884, (1993)
  • [10] Joachimowitz N., Pichot C.H., Hugonin J.P., Inverse scattering: An iterative numerical method for electromagnetic imaging, IEEE Trans. Ant. Propagat, AP-39, 12, pp. 1742-1752, (1991)