A NONCOMMUTATIVE EXTENSION OF GRAVITY

被引:23
作者
MADORE, J
MOURAD, J
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 1994年 / 3卷 / 01期
关键词
D O I
10.1142/S0218271894000332
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The commutative algebra of functions on a manifold is extended to a noncommutative algebra by considering its tensor product with the algebra of n x n complex matrices. Noncommutative geometry is used to formulate an extension of the Einstein-Hilbert action. The result is shown to be equivalent to the usual Kaluza-Klein theory with the manifold SU(n) as an internal space, in a truncated approximation.
引用
收藏
页码:221 / 224
页数:4
相关论文
共 7 条
[1]   GRAVITY IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :205-217
[2]   INTERNAL GRAVITY [J].
CHO, YM .
PHYSICAL REVIEW D, 1987, 35 (08) :2628-2631
[3]  
Connes A., 1990, GEOMETRIE NONCOMMUTA
[4]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321
[5]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND NEW MODELS OF GAUGE-THEORY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :323-330
[6]   MODIFICATION OF KALUZA-KLEIN THEORY [J].
MADORE, J .
PHYSICAL REVIEW D, 1990, 41 (12) :3709-3719
[7]  
MADORE J, IN PRESS CLASS QUANT