Quasi-Harmonic Approximation in the Case of Potential Wells of Finite Depth

被引:0
|
作者
Baran, A., V [1 ]
Kudryashov, V. V. [1 ]
机构
[1] Natl Acad Sci Belarus, Inst Phys, 68 Nezavisimosti Ave, Minsk 220072, BELARUS
来源
关键词
potential wells of a finite depth; approximate wave functions; modified Poschl-Teller potential;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recently proposed quasi-harmonic approximation to wave functions of bound states is generalized and applied to the potential wells of a finite depth with two inflection points. The approximate eigenfunctions are expressed via parabolic cylinder functions. The realized verification in the case of the modified Poschl-Teller potential shows fairly high accuracy of the proposed approximation.
引用
收藏
页码:384 / 388
页数:5
相关论文
共 50 条
  • [1] QUASI-HARMONIC APPROXIMATION AND A GENERALIZED GRUNEISEN EQUATION OF STATE
    MOPSIK, FI
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1973, A 77 (04): : 407 - 409
  • [2] Conformational entropy of biomolecules: Beyond the quasi-harmonic approximation
    Numata, Jorge
    Wan, Michael
    Knapp, Ernst-Walter
    GENOME INFORMATICS 2007, VOL 18, 2007, 18 : 192 - 205
  • [3] High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation
    Nath, Pinku
    Plata, Jose J.
    Usanmaz, Demet
    Al Orabi, Rabih Al Rahal
    Fornari, Marco
    Nardelli, Marco Buongiorno
    Toher, Cormac
    Curtarolo, Stefano
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 125 : 82 - 91
  • [4] QUASI-HARMONIC FINITE STRAIN EQUATIONS OF STATE OF SOLIDS
    DAVIES, GF
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1973, 34 (08) : 1417 - 1429
  • [5] Harmonic and quasi-harmonic spheres
    Lin, FH
    Wang, CY
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (02) : 397 - 429
  • [6] THERMAL EXPANSION AND VIBRATIONAL SPECTRA OF PARATELLURITE IN QUASI-HARMONIC APPROXIMATION
    Syetov, Y.
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2025, 26 (01) : 1032 - 1039
  • [8] Towards the high-throughput prediction of finite-temperature properties using the quasi-harmonic approximation
    Pallikara, Ioanna
    Skelton, Jonathan M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (20)
  • [9] Determining Hubbard U of VO2 by the quasi-harmonic approximation
    Kong, Longjuan
    Lu, Yuhang
    Zhuang, Xinying
    Zhou, Zhiyong
    Hu, Zhenpeng
    CHINESE PHYSICS B, 2024, 33 (01)
  • [10] Quasi-harmonic approximation for solution of the two-dimensional Schrodinger equation
    Kudryashov, VV
    DOKLADY AKADEMII NAUK BELARUSI, 1996, 40 (03): : 52 - 55