AN ALGORITHMIC PROOF OF A GENERALIZATION OF THE BIRKHOFF-VONNEUMANN THEOREM

被引:12
作者
LEWANDOWSKI, JL
LIU, CL
LIU, JWS
机构
[1] UNIV ILLINOIS,CHAMPAIGN,IL 61820
[2] AT&T BELL LABS,ERC,PRINCETON,NJ 08540
关键词
D O I
10.1016/0196-6774(86)90024-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
[31]   THE CONTINUOUS ANALOG AND GENERALIZATION OF THE CLASSICAL BIRKHOFF-MILGRAM THEOREM [J].
HERDEN, G ;
MEHTA, G .
MATHEMATICAL SOCIAL SCIENCES, 1994, 28 (01) :59-66
[32]   An algorithmic proof of Bregman-Minc theorem [J].
Xu, Li ;
Liang, Heng ;
Bai, Fengshan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (12) :2181-2185
[34]   GENERALIZATION OF VONNEUMANN THEOREM ON IRREPRODUCIBLE MEASUREMENTS IN QUANTUM FIELD-THEORY [J].
LOMSADZE, YM .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1978, (06) :119-125
[35]   PROOF OF POINCARE-BIRKHOFF FIXED-POINT THEOREM [J].
BROWN, M ;
NEUMANN, WD .
MICHIGAN MATHEMATICAL JOURNAL, 1977, 24 (01) :21-31
[36]   PROOF OF AN ADDITION THEOREM FOR SPHERICAL VONNEUMANN FUNCTIONS USING KASTERINS FORMULA [J].
ZIESCHE, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (07) :375-&
[37]   A variational proof of Birkhoff's theorem on doubly stochastic matrices [J].
Zhu, QJ .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (03) :309-313
[38]   ON A THEOREM OF VONNEUMANN [J].
LOOMIS, LH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1946, 32 (08) :213-215
[39]   A COLORING PROOF OF A GENERALIZATION OF FERMATS LITTLE THEOREM [J].
SMYTH, CJ .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (06) :469-471
[40]   A SHORT PROOF AND A GENERALIZATION OF MIRANDA EXISTENCE THEOREM [J].
VRAHATIS, MN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (03) :701-703