TRANSVERSAL HOMOCLINIC POINTS OF A CLASS OF CONSERVATIVE DIFFEOMORPHISMS

被引:25
作者
FONTICH, E [1 ]
机构
[1] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA I,BARCELONA,SPAIN
关键词
D O I
10.1016/0022-0396(90)90012-E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a global graph transformation to obtain estimates for certain invariant manifolds of a class of area preserving diffeomorphisms with symmetries. The existence of homoclinic or heteroclinic points and the analyticity of the angle between the invariant manifolds at them is proved for the Hénon and the standard maps. A lower bound of this angle is given for a large set of values of the parameters. © 1990.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 16 条
[1]  
Apostol TM., 1960, MATH ANAL
[2]   HOMOCLINIC BIFURCATIONS AND THE AREA-CONSERVING HENON MAPPING [J].
DEVANEY, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (02) :254-266
[3]   REVERSIBLE DIFFEOMORPHISMS AND FLOWS [J].
DEVANEY, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 218 (APR) :89-113
[5]  
FONTICH E, 1983, LECT NOTES PHYS, V179, P270
[6]  
FONTICH E, 1989, EUROPEAN C ITERATION, P189
[7]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[8]   NUMERICAL STUDY OF QUADRATIC AREA-PRESERVING MAPPINGS [J].
HENON, M .
QUARTERLY OF APPLIED MATHEMATICS, 1969, 27 (03) :291-&
[9]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[10]  
HIRSCH M, 1970, P S PURE MATH, V14, P133