Asymptotic behavior of interface solutions to semilinear parabolic equations with nonlinear forcing terms

被引:0
作者
De Cave, Linda Maria [1 ]
Strani, Marta [2 ]
机构
[1] Univ Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Univ Ca Foscari, Dipartimento Sci Mol & Nanosistemi, Via Torino 155, I-30172 Venice, Italy
来源
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA | 2018年 / 9卷 / 01期
关键词
Metastability; slow motion; internal interfaces; asymptotic dynamics; semilinear diffusion;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the asymptotic behavior of solutions to semi linear parabolic equations in bounded intervals. In particular, we are concerned with a special class of solutions, called interface solutions, which exhibit a metastable behavior, meaning that their convergence towards the asymptotic configuration of the system is exponentially slow. The key of our analysis is a linearization around an approximation of the steady state of the problem, and the reduction of the dynamics to a one-dimensional motion, describing the slow convergence of the interfaces towards the equilibrium.
引用
收藏
页码:85 / 131
页数:47
相关论文
共 35 条
[1]   SLOW MOTION FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
ALIKAKOS, N ;
BATES, PW ;
FUSCO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :81-135
[2]   On the connection problem for potentials with several global minima [J].
Alikakos, N. D. ;
Fusco, G. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) :1871-1906
[3]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI [DOI 10.1080/03605307908820117, 10.1080/03605307908820117]
[4]   Using Global Invariant Manifolds to Understand Metastability in the Burgers Equation With Small Viscosity [J].
Beck, Margaret ;
Wayne, C. Eugene .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03) :1043-1065
[5]  
Berestycki H., 2001, INTERFACE FREE BOUND, V3, P361, DOI DOI 10.4171/IFB/45
[6]   METASTABLE PATTERNS IN SOLUTIONS OF UT=E2UXX-F(U) [J].
CARR, J ;
PEGO, RL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :523-576
[7]  
deGroen P. P. N., 1998, ELECT J DIFFERENTIAL, V1998
[8]  
DeLuca L., 2018, ARXIV180208082
[9]   Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting [J].
Dipierro, Serena ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) :1061-1105
[10]   Metastability for nonlinear convection-diffusion equations [J].
Folino, Raffaele ;
Lattanzio, Corrado ;
Mascia, Corrado ;
Strani, Marta .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04)