MODULES WHOSE CLOSED SUBMODULES ARE FINITELY GENERATED

被引:3
作者
DUNG, NV [1 ]
机构
[1] INST MATH,HANOI,VIETNAM
关键词
D O I
10.1017/S0013091500005083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M is called a CC-module if every closed submodule of M is cyclic. It is shown that a cyclic module M is a direct sum of indecomposable submodules if all quotients of cyclic submodules of M are CC-modules. This theorem generalizes a recent result of B. L. Osofsky and P. F. Smith on cyclic completely CS-modules. Some further applications are given for cyclic modules which are decomposed into projectives and injectives.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 12 条
[1]   RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND [J].
CHATTERS, AW ;
HAJARNAVIS, CR .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109) :61-80
[2]   RIGHT PCI RING IS RIGHT NOETHERIAN [J].
DAMIANO, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (01) :11-14
[3]   RINGS ALL OF WHOSE FINITELY GENERATED MODULES ARE INJECTIVE [J].
OSOFSKY, BL .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (02) :645-&
[4]   NONINJECTIVE CYCLIC MODULES [J].
OSOFSKY, BL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (06) :1383-&
[5]  
OSOFSKY BL, CYCLIC MODULES WHOSE
[6]  
Sharpe T., 1972, INJECTIVE MODULES, V62
[7]   RINGS CHARACTERIZED BY THEIR CYCLIC MODULES [J].
SMITH, PF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (01) :93-111
[8]  
SMITH PF, IN PRESS O J MATH OX
[9]  
SMITH PF, 1978, PAC J MATH, V74, P247
[10]  
VANHUYNH D, IN PRESS ARCH MATH B