NONABELIAN ORBIFOLDS AND THE BOSON-FERMION CORRESPONDENCE

被引:31
作者
DONG, CY
MASON, G
机构
[1] Department of Mathematics, University of California, Santa Cruz, 95064, CA
关键词
D O I
10.1007/BF02101462
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a positive integer l divisible by 8 there is a (bosonic) holomorphic vertex operator algebra (VOA) V(GAMMA)l associated to the spin lattice GAMMA(l). For a broad class of finite groups G of automorphisms of V(GAMMA)l we prove the existence and uniqueness of irreducible g-twisted V(GAMMA)l-modules and establish the modular-invariance of the partition functions Z(q, h, tau) for commuting elements in G. In particular, for any finite group there are infinitely many holomorphic VOAs admitting G for which these properties hold. The proof is facilitated by a boson-fermion correspondence which gives a VOA isomorphism between V(GAMMA)l and a certain fermionic construction, and which extends work of Frenkel and others.
引用
收藏
页码:523 / 559
页数:37
相关论文
共 28 条
[1]   ORBIFOLDS, HOPF-ALGEBRAS, AND THE MOONSHINE [J].
BANTAY, P .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (03) :187-194
[2]  
BANTAY P, 1990, PHYS LETT B, V245, P4
[4]   THE OPERATOR ALGEBRA OF ORBIFOLD MODELS [J].
DIJKGRAAF, R ;
VAFA, C ;
VERLINDE, E ;
VERLINDE, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (03) :485-526
[5]   STRINGS ON ORBIFOLDS .2. [J].
DIXON, L ;
HARVEY, J ;
VAFA, C ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 274 (02) :285-314
[6]   STRINGS ON ORBIFOLDS [J].
DIXON, L ;
HARVEY, JA ;
VAFA, C ;
WITTEN, E .
NUCLEAR PHYSICS B, 1985, 261 (04) :678-686
[7]  
DIXON L, 1988, COMMUN MATH PHYS, V119, P285
[8]  
DONG C, 1994, J ALGEBRA, V164
[9]  
Dong C, 1993, PROGR MATH, V112
[10]   VERTEX ALGEBRAS ASSOCIATED WITH EVEN LATTICES [J].
DONG, CY .
JOURNAL OF ALGEBRA, 1993, 161 (01) :245-265