Transition metal oxides for sodium-ion batteries

被引:294
作者
Su, Heng [1 ]
Jaffer, Saddique [1 ,2 ]
Yu, Haijun [1 ]
机构
[1] Beijing Univ Technol, Coll Mat Sci & Engn, Pingleyuan 100, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Inst Solid State Microstruct & Properties, Pingleyuan 100, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Electrode materials; Transitionmetaloxides; Crystalline structure;
D O I
10.1016/j.ensm.2016.06.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable batteries have attracted significant attention in recent years because of aggravate environment problems. Lithium-ion batteries play an important role in our daily life and extensively used in portable electronic devices as well as hybrid electric vehicles. However, the uneven distribution and limitation of lithium resources have gradually aroused people's anxiety on lithium-ion battery sustainability. Sodium-ion batteries have been studied by many groups recently and potentially used as one of the next-generation rechargeable batteries due to the earth abundance and cost-effectiveness of sodium resources. The key to commercialize the promising sodium-ion rechargeable batteries mainly lies on the development of advanced electrode materials. Transition metal oxides are one of the oldest and most important electrode materials for sodium-ion batteries, and have been studies by many researchers for about 30 years, especially in recent five years. Here, with a main line of crystalline structure design for transition metal oxides, the whole research progress on transition metal oxides used for sodium-ion batteries has been reviewed, some important research results in recent five years are emphatically introduced, and the perspective on novel electrode materials development is also discussed. (C) 2016Published by Elsevier B.V.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 126 条
[1]  
Armstrong AR, 2011, NAT MATER, V10, P223, DOI [10.1038/nmat2967, 10.1038/NMAT2967]
[2]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[3]   Pursuit of Sustainable Iron-Based Sodium Battery Cathodes: Two Case Studies [J].
Barpanda, Prabeer .
CHEMISTRY OF MATERIALS, 2016, 28 (04) :1006-1011
[4]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[5]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[6]   High-temperature phase transition in the three-layered sodium cobaltite P′3-NaxCoO2 (x∼0.62) [J].
Blangero, Maxime ;
Carlier, Dany ;
Pollet, Michael ;
Darriet, Jacques ;
Delmas, Claude ;
Doumerc, Jean-Pierre .
PHYSICAL REVIEW B, 2008, 77 (18)
[7]   Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x 0.4) [J].
Bo, Shou-Hang ;
Li, Xin ;
Toumar, Alexandra J. ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2016, 28 (05) :1419-1429
[8]   Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type NaxMg0.11Mn0.89O2 [J].
Buchholz, Daniel ;
Vaalma, Christoph ;
Chagas, Luciana Gomes ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2015, 282 :581-585
[9]   Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells [J].
Caballero, A ;
Hernán, L ;
Morales, J ;
Sánchez, L ;
Peña, JS ;
Aranda, MAG .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (04) :1142-1147
[10]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+