We study the Abelian sandpile model on decorated one-dimensional chains. We determine the structure and the asymptotic form of distribution of avalanche sizes in these models, and show that these differ qualitatively from the behavior on a simple linear chain. We find that the probability distribution of the total number of topplings s on a finite system of size L is not described by a simple finite-size scaling form, but by a linear combination of two simple scaling forms ProbL(s)=(1/L)f1(s/L)+(1/L2)f2(s/L2), for large L, where f1 and f2 are some scaling functions of one argument.
机构:
NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
NYU Shanghai, NYU ECNU Inst Math Sci, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R ChinaNYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
Newman, C. M.
Ravishankar, K.
论文数: 0引用数: 0
h-index: 0
机构:
NYU Shanghai, NYU ECNU Inst Math Sci, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R ChinaNYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
Ravishankar, K.
Schertzer, E.
论文数: 0引用数: 0
h-index: 0
机构:
UPMC Univ Paris 06, CNRS UMR 7599, Lab Probabilites & Modeles Aleatoires, Paris, France
Coll France, CNRS UMR 7241, Ctr Interdisciplinary Res Biol, Paris, FranceNYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA