THE ONE-DIMENSIONAL HEAT EQUATION AS A FIRST-ORDER SYSTEM: FORMAL SOLUTIONS BY MEANS OF THE LAPLACE TRANSFORM

被引:0
作者
Toparkus, Heinz
机构
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2012年 / 4卷 / 02期
关键词
first-order parabolic systems; Greens function; real theta functions; distributions; heat equation; Laplace transform;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper an ex tended heat equation problem as a linear first-order system of partial differential equations is considered. The classical problems in a strip S are assigned to our problems. Formal solutions are given by one-dimensional Laplace transform.
引用
收藏
页码:174 / 185
页数:12
相关论文
共 12 条
[1]  
Cannon J.R., 1984, ONE DIMENSIONAL HEAT, P62
[2]  
Doetsch G., 1970, THEORIE ANWENDUNG LA, P297
[3]  
Gelfand I.M., 1960, VERALLGEMEINERTE FUN, V1, P45
[4]  
Hermann M., 2004, NUMERIK GEWOHNLICHER, P195
[5]  
Jahnke-Emde-Losch, 1960, TABLES HIGHER FUNCTI, P82
[6]  
Kevorkian J., 2000, PARTIAL DIFFERENTIAL, P39
[7]  
Oberhettinger F., 1973, TABLES LAPLACE TRANS, P421
[8]  
Polyanin A.D, 1996, HDB LINEAREN DIFFERE, P345
[9]  
Prudnikov A.P., 1992, INTEGRALS SERIES, V5, P69
[10]  
Thompson W.J., 1997, ATLAS COMPUTING MATH, P525