ALMOST PERIODIC-SOLUTIONS IN AN INTEGRODIFFERENTIAL EQUATION

被引:7
作者
HAMAYA, Y
YOSHIZAWA, T
机构
[1] Department of Applied Mathematics, Okayama University of Science
关键词
D O I
10.1017/S030821050002432X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of integrodifferential equations [formula omitted] where f(t, x) and F(t, s, x, y) are almost periodic in t uniformly for parameters, and we assume that the system has a bounded solution u(t). To discuss the existence of an almost periodic solution, we consider the relationship between the total stability of u(t) with respect to a certain metric ρ and the separation condition with respect to ρ. Moreover, we discuss a sufficient condition for the existence of a positive almost periodic solution of a model of the dynamics of an n-species system. © 1990, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条
[41]   Existence and uniqueness of almost periodic solution to integrodifferential equation [J].
Wang, Q. .
Huaqiao Daxue Xuebao/Journal of Huaqiao University, 2001, 22 (01) :1-6
[42]   ALMOST PERIODIC-SOLUTIONS OF THE NONLINEAR IMPULSE SYSTEMS [J].
AKHMETOV, MU ;
PERESTYUK, NA .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (01) :3-5
[43]   Almost Periodic Solutions of Linear Neutral Integrodifferential Equations [J].
Zeng Weiyao Hunan Light Industrial College Changsha .
应用数学, 1992, (04) :115-117
[44]   POSITIVE ALMOST PERIODIC-SOLUTIONS OF A NONLINEAR INTEGRAL-EQUATION FROM THE THEORY OF EPIDEMICS [J].
TORREJON, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (02) :510-534
[45]   ON THE EXISTENCE OF PERIODIC-SOLUTIONS FOR LIENARDS EQUATION [J].
HAI, DD .
MATHEMATISCHE NACHRICHTEN, 1988, 139 :245-249
[46]   EXISTENCE OF PERIODIC-SOLUTIONS OF A NERVE EQUATION [J].
HEIDEN, UAD .
BIOLOGICAL CYBERNETICS, 1976, 21 (01) :37-39
[47]   EXISTENCE OF PERIODIC-SOLUTIONS TO NAGUMOS EQUATION [J].
HASTINGS, S .
QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (99) :369-378
[48]   PERIODIC-SOLUTIONS OF A QUARTIC NONAUTONOMOUS EQUATION [J].
ALWASH, MAM ;
LLOYD, NG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (07) :809-820
[49]   PERIODIC-SOLUTIONS TO A PARABOLIC EQUATION WITH HYSTERESIS [J].
KREJCI, P .
MATHEMATISCHE ZEITSCHRIFT, 1987, 194 (01) :61-70
[50]   APPROXIMATIONS TO PERIODIC-SOLUTIONS OF A DUFFING EQUATION [J].
BAZLEY, NW ;
MILETTA, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1983, 34 (03) :301-309