ALMOST PERIODIC-SOLUTIONS IN AN INTEGRODIFFERENTIAL EQUATION

被引:7
作者
HAMAYA, Y
YOSHIZAWA, T
机构
[1] Department of Applied Mathematics, Okayama University of Science
关键词
D O I
10.1017/S030821050002432X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of integrodifferential equations [formula omitted] where f(t, x) and F(t, s, x, y) are almost periodic in t uniformly for parameters, and we assume that the system has a bounded solution u(t). To discuss the existence of an almost periodic solution, we consider the relationship between the total stability of u(t) with respect to a certain metric ρ and the separation condition with respect to ρ. Moreover, we discuss a sufficient condition for the existence of a positive almost periodic solution of a model of the dynamics of an n-species system. © 1990, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条
[31]   THE EFFECT OF VANISHING OF ALMOST PERIODIC-SOLUTIONS FOR A NONLINEAR DIFFUSION EQUATION WITH QUASIPERIODIC COEFFICIENTS [J].
BLINOV, IN .
MATHEMATICS OF THE USSR-IZVESTIYA, 1982, 46 (06) :601-608
[32]   ALMOST PERIODIC-SOLUTIONS OF A MODIFIED NON-LINEAR SCHRODINGER-EQUATION [J].
PRIKARPATSKII, AK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1981, 47 (03) :487-493
[33]   ALMOST PERIODIC-SOLUTIONS OF EVOLUTION-EQUATIONS [J].
BALLOTTI, ME ;
GOLDSTEIN, JA ;
PARROTT, ME .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 138 (02) :522-536
[34]   PERIODIC-SOLUTIONS OF A PENDULUM-LIKE INTEGRODIFFERENTIAL EQUATION WITH INFINITE RETARDATION DESCRIBING JOSEPHSON TUNNELING [J].
ZURBRUGG, C .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (01) :21-28
[35]   ALMOST PERIODIC-SOLUTIONS TO NONLINEAR-SYSTEMS [J].
KARTSATO.AG .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03) :A327-A328
[36]   THE PERIODIC-SOLUTIONS OF RICCATI EQUATION WITH PERIODIC COEFFICIENTS [J].
ZHAO, HZ .
CHINESE SCIENCE BULLETIN, 1990, 35 (23) :2018-2020
[37]   ALMOST PERIODIC-SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS [J].
YANG, YS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (02) :231-238
[39]   ALMOST PERIODIC-SOLUTIONS OF AFFINE ITO EQUATIONS [J].
MOROZAN, T ;
TUDOR, C .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1989, 7 (04) :451-474
[40]   ALMOST PERIODIC-SOLUTIONS OF EVOLUTIONAL VARIATIONAL INEQUALITIES [J].
PANKOV, AA .
DOKLADY AKADEMII NAUK SSSR, 1978, 241 (02) :286-289