Numerical solution of the Schrodinger equations via a reliable algorithm

被引:0
作者
Heidari, Mohammad [1 ]
Borzabadi, Akbar Hashemi [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Schrodinger equation; finite difference method; numerical algorithm; approximation;
D O I
10.1504/IJCSM.2015.072967
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a reliable algorithm for solving Schrodinger equations is established. By second-order central difference scheme, the second-order spatial partial derivative of the Schrodinger equations are reduced to a system of first-order ordinary differential equations, that are solved by an efficient algorithm. The comparison of the numerical solution and the exact solution for some test cases shows that the given algorithm is easy and practical for extracting good approximate solutions of Schrodinger equations.
引用
收藏
页码:417 / 424
页数:8
相关论文
共 16 条
[1]  
Akram M., 2005, Journal of the Indian Institute of Science, V85, P253
[2]  
Akram M., 2007, INT MATH FORUM, V2, P565
[3]  
Akram M., 2005, INT J PURE APPL MATH, V24, P351
[4]  
Akram M., 2007, INT MATH FORUM, V2, P551
[5]   A family of two-stage two-step methods for the numerical integration of the Schrodinger equation and related IVPs with oscillating solution [J].
Anastassi, Z. A. ;
Simos, T. E. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 45 (04) :1102-1129
[6]   STABLE EXPLICIT SCHEMES FOR EQUATIONS OF THE SCHRODINGER TYPE [J].
CHAN, TF ;
LEE, D ;
SHEN, LJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (02) :274-281
[7]   ON A FAMILY OF FINITE-DIFFERENCE SCHEMES WITH APPROXIMATE TRANSPARENT BOUNDARY CONDITIONS FOR A GENERALIZED 1D SCHRODINGER EQUATION [J].
Ducomet, Bernard ;
Zlotnik, Alexander ;
Zlotnik, Ilya .
KINETIC AND RELATED MODELS, 2009, 2 (01) :151-179
[8]  
Lambert J. D., 1991, NUMERICAL METHODS OR
[9]   EXPONENTIAL-FITTING METHODS FOR NUMERICAL-SOLUTION OF SCHRODINGER EQUATION [J].
RAPTIS, A ;
ALLISON, AC .
COMPUTER PHYSICS COMMUNICATIONS, 1978, 14 (1-2) :1-5
[10]   ORTHOGONAL SPLINE COLLOCATION METHODS FOR SCHRODINGER-TYPE EQUATIONS IN ONE SPACE VARIABLE [J].
ROBINSON, MP ;
FAIRWEATHER, G .
NUMERISCHE MATHEMATIK, 1994, 68 (03) :355-376