Nonlinear variational surface waves

被引:3
作者
Austria, Lawrence [1 ]
Hunter, John K. [2 ]
机构
[1] US Navy, Air Warfare Ctr, Div Aircraft, Patuxent River, MD 20670 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.4310/CIS.2013.v13.n1.a1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We derive nonlocal asymptotic equations for weakly nonlinear surface wave solutions of variational wave equations in a half-space. These equations are analogous to, but different from, equations that describe weakly nonlinear Rayleigh waves in elasticity and other hyperbolic conservation laws. We prove short time existence of smooth solutions of a simplified, but representative, asymptotic equation and present numerical solutions which show the formation of cusp-singularities. This singularity formation on the boundary is a different mechanism for the nonlinear breakdown of smooth solutions of hyperbolic IBVPs from the more familiar one of singularity formation in the interior.
引用
收藏
页码:3 / 43
页数:41
相关论文
共 31 条
[1]   Nonlinear surface waves on a tangential discontinuity in magnetohydrodynamics [J].
Alí, G ;
Hunter, JK .
QUARTERLY OF APPLIED MATHEMATICS, 2003, 61 (03) :451-474
[2]   Hamiltonian equations for scale-invariant waves [J].
Alì, G ;
Hunter, JK ;
Parker, DF .
STUDIES IN APPLIED MATHEMATICS, 2002, 108 (03) :305-321
[3]   ORIENTATION WAVES IN A DIRECTOR FIELD WITH ROTATIONAL INERTIA [J].
Ali, Giuseppe ;
Hunter, John K. .
KINETIC AND RELATED MODELS, 2009, 2 (01) :1-37
[4]  
Austria L., 2011, THESIS
[5]  
Benzoni-Gavage S., 2007, MULTIDIMENSIONAL HYP
[6]   Global solutions of the Hunter-Saxton equation [J].
Bressan, A ;
Constantin, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) :996-1026
[7]   Asymptotic variational wave equations [J].
Bressan, Alberto ;
Zhang, Ping ;
Zheng, Yuxi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (01) :163-185
[8]   Conservative solutions to a nonlinear variational wave equation [J].
Bressan, Alberto ;
Zheng, Yuxi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) :471-497
[9]   ENERGY CONSERVATIVE SOLUTIONS TO A NONLINEAR WAVE SYSTEM OF NEMATIC LIQUID CRYSTALS [J].
Chen, Geng ;
Zhang, Ping ;
Zheng, Yuxi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) :1445-1468
[10]  
Dafermos C. M., 2005, HYPERBOLIC CONSERVAT