ASYMPTOTIC COMPLETENESS FOR N-BODY SHORT-RANGE QUANTUM-SYSTEMS - A NEW PROOF

被引:102
作者
GRAF, GM
机构
[1] Institut für Theoretische Physik, ETH-Hönggerberg, Zürich
关键词
D O I
10.1007/BF02278000
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an alternative geometrical proof of asymptotic completeness for an arbitrary number of quantum particles interacting through shortrange pair potentials. It relies on an estimate showing that the intercluster motion concentrates asymptotically on classical trajectories. © 1990 Springer-Verlag.
引用
收藏
页码:73 / 101
页数:29
相关论文
共 24 条
[1]  
[Anonymous], 1987, SCHRODINGER OPERATOR
[2]   TIME-DEPENDENT APPROACH TO COMPLETENESS OF MULTIPARTICLE QUANTUM SYSTEMS [J].
DEIFT, P ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (05) :573-583
[3]   POINTWISE BOUNDS ON EIGENFUNCTIONS AND WAVE PACKETS IN N-BODY QUANTUM SYSTEMS-IV [J].
DEIFT, P ;
HUNZIKER, W ;
SIMON, B ;
VOCK, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 64 (01) :1-34
[4]   A NEW PROOF OF THE PROPAGATION THEOREM FOR N-BODY QUANTUM-SYSTEMS [J].
DEREZINSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (02) :203-231
[5]  
ENSS V, 1986, LECT NOTES MATH, V1218, P61
[6]   ASYMPTOTIC COMPLETENESS FOR QUANTUM-MECHANICAL POTENTIAL SCATTERING .2. SINGULAR AND LONG-RANGE POTENTIALS [J].
ENSS, V .
ANNALS OF PHYSICS, 1979, 119 (01) :117-132
[8]  
ENSS V, 1983, LECT NOTES MATH, V1031, P62
[9]   A NEW PROOF OF THE MOURRE ESTIMATE [J].
FROESE, R ;
HERBST, I .
DUKE MATHEMATICAL JOURNAL, 1982, 49 (04) :1075-1085
[10]  
GRAF GM, 1990, HELV PHYS ACTA, V63, P107