An adaptive Monte Carlo algorithm for computing mixed logit estimators

被引:37
|
作者
Bastin, Fabian [1 ]
Cirillo, Cinzia [2 ]
Toint, Philippe L. [2 ]
机构
[1] Univ Namur, Dept Math, B-5000 Namur, Belgium
[2] Univ Namur, Transportat Res Grp, Dept Math, B-5000 Namur, Belgium
关键词
Maximum simulated likelihood estimation; Trust-region algorithms; Monte Carlo samplings; Mixed logit models;
D O I
10.1007/s10287-005-0044-y
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Researchers and analysts are increasingly using mixed logit models for estimating responses to forecast demand and to determine the factors that affect individual choices. However the numerical cost associated to their evaluation can be prohibitive, the inherent probability choices being represented by multidimensional integrals. This cost remains high even if Monte Carlo or quasi-Monte Carlo techniques are used to estimate those integrals. This paper describes a new algorithm that uses Monte Carlo approximations in the context of modern trust-region techniques, but also exploits accuracy and bias estimators to considerably increase its computational efficiency. Numerical experiments underline the importance of the choice of an appropriate optimisation technique and indicate that the proposed algorithm allows substantial gains in time while delivering more information to the practitioner.
引用
收藏
页码:55 / 79
页数:25
相关论文
共 50 条
  • [1] Application of an adaptive Monte Carlo algorithm to mixed logit estimation
    Bastin, F
    Cirillo, C
    Toint, PL
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2006, 40 (07) : 577 - 593
  • [2] A MONTE-CARLO COMPARISON OF ESTIMATORS FOR THE MULTINOMIAL LOGIT MODEL
    BUNCH, DS
    BATSELL, RR
    JOURNAL OF MARKETING RESEARCH, 1989, 26 (01) : 56 - 68
  • [3] ANALYSIS OF ESTIMATORS FOR ADAPTIVE KINETIC MONTE CARLO
    Aristoff, David
    Chill, Samuel T.
    Simpson, Gideon
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2016, 11 (02) : 171 - 186
  • [4] Logit Mixed Logit Under Asymmetry and Multimodality of WTP: A Monte Carlo EvaluationJEL codes
    Scarpa, Riccardo
    Franceschinis, Cristiano
    Thiene, Mara
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 2021, 103 (02) : 643 - 662
  • [5] Adaptive Monte Carlo algorithm in d=1
    Balaz, A
    Belic, A
    Bogojevic, A
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 1-2 : 65 - 70
  • [6] 基于Monte Carlo模拟的Mixed Logit模型求解研究
    张羽祥
    赵胜川
    交通标准化, 2009, (01) : 112 - 115
  • [7] Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo
    Munger, D.
    L'Ecuyer, P.
    Bastin, F.
    Cirillo, C.
    Tuffin, B.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2012, 46 (02) : 305 - 320
  • [8] KERNEL ESTIMATORS OF ASYMPTOTIC VARIANCE FOR ADAPTIVE MARKOV CHAIN MONTE CARLO
    Atchade, Yves F.
    ANNALS OF STATISTICS, 2011, 39 (02): : 990 - 1011
  • [9] CLASS OF MONTE CARLO ESTIMATORS
    MIKHAILOV, GA
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (01): : 137 - +
  • [10] On Nesting Monte Carlo Estimators
    Rainforth, Tom
    Cornish, Robert
    Yang, Hongseok
    Warrington, Andrew
    Wood, Frank
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80