OSCILLATOR WITH STRONG QUADRATIC DAMPING FORCE

被引:35
作者
Cveticanin, Livija [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Dept Mech, Novi Sad, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2009年 / 85卷 / 99期
关键词
D O I
10.2298/PIM0999119C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oscillations of a system with strong quadratic damping are considered. For the exact analytical form of the energy-displacement function the explicit form of the maximal amplitudes of vibration are obtained by introducing the Lambert W function. Comparing the neighbor maximal amplitudes and the corresponding energies the conclusions about the energy dissipation is given. The approximate solution for a strong nonlinear differential equation which describes the motion of the oscillator with quadratic damping is calculated applying the elliptic-harmonic-balance method. The accuracy of the solution is affirmed by comparing the maximal displacements obtained using the approximate method with the exact one obtained by energy method.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 14 条
[1]   Analytical approximations of the period of a generalized nonlinear van der Pol oscillator [J].
Andrianov, Igor V. ;
van Horssen, Wim T. .
JOURNAL OF SOUND AND VIBRATION, 2006, 295 (3-5) :1099-1104
[2]  
Andronov A. A., 1981, TEORIJA KOLEBANIJ
[3]  
Bogolyubov N. N., 1974, ASIMPTOTICHESKIE MET
[4]  
BYRD PF, 1954, HDB ELLIPTIC INTEGRA
[5]   Vibrations of the nonlinear oscillator with quadratic nonlinearity [J].
Cveticanin, L .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 :123-135
[6]  
KAMKE E, 1971, DIFFERENTIALGLEICHUN
[7]  
Magnus K., 1982, KOLEBANIJA
[8]  
Magnus K., 1997, SCHWINGUNGEN
[9]   Analysis of non-linear oscillators having non-polynomial elastic terms [J].
Mickens, RE .
JOURNAL OF SOUND AND VIBRATION, 2002, 255 (04) :789-792
[10]  
Nayfeh AH., 2008, NONLINEAR OSCIL