Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification

被引:110
|
作者
Zanaty, E. A. [1 ]
机构
[1] Sohag Univ, Fac Sci, Math Dept, Comp Sci Sect, Sohag, Egypt
关键词
Neural networks; Support vector machine; Kernel functions; Quadratic Programming (QP);
D O I
10.1016/j.eij.2012.08.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new kernel function for improving the accuracy of the Support Vector Machines (SVMs) classification. The proposed kernel function is stated in general form and is called Gaussian Radial Basis Polynomials Function (GRPF) that combines both Gaussian Radial Basis Function (RBF) and Polynomial (POLY) kernels. We implement the proposed kernel with a number of parameters associated with the use of the SVM algorithm that can impact the results. A comparative analysis of SVMs versus the Multilayer Perception (MLP) for data classifications is also presented to verify the effectiveness of the proposed kernel function. We seek an answer to the question: "which kernel can achieve a high accuracy classification versus multi-layer neural networks''. The support vector machines are evaluated in comparisons with different kernel functions and multi-layer neural networks by application to a variety of nonseparable data sets with several attributes. It is shown that the proposed kernel gives good classification accuracy in nearly all the data sets, especially those of high dimensions. The use of the proposed kernel results in a better, performance than those with existing kernels. (C) 2012 Faculty of Computers and Information, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [41] Improving Classification with Support Vector Machines
    Muntean, Maria
    Valean, Honoriu
    Ileana, Ioan
    Rotar, Corina
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2010, 12 (03): : 23 - 33
  • [42] Image classification by support vector machines
    Zhang, YN
    Zhao, RC
    Leung, Y
    PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 360 - 363
  • [43] Support vector machines in multisource classification
    Halldorsson, GH
    Benediktsson, JA
    Sveinsson, JR
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2054 - 2056
  • [44] Multicategory classification by support vector machines
    Bredensteiner, EJ
    Bennett, KP
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 53 - 79
  • [45] Support vector machines for polycategorical classification
    Tsochantaridis, I
    Hofmann, T
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 456 - 467
  • [46] Support Vector Machines for classification and regression
    Brereton, Richard G.
    Lloyd, Gavin R.
    ANALYST, 2010, 135 (02) : 230 - 267
  • [47] Correlation Kernels for Support Vector Machines Classification with Applications in Cancer Data
    Jiang, Hao
    Ching, Wai-Ki
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012
  • [48] Semi-supervised support vector machines for data classification with uncertainty
    Ling, J
    Li, S
    ICEMS 2005: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2005, : 2278 - 2281
  • [49] Aerial LiDAR data classification using Support Vector Machines (SVM)
    Lodha, Suresh K.
    Kreps, Edward J.
    Helmbold, David P.
    Fitzpatrick, Darren
    THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2007, : 567 - 574
  • [50] Transductive Support Vector Machines for classification of microarray gene expression data
    Semolini, R
    Von Zuben, FJ
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2946 - 2951