Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification

被引:110
|
作者
Zanaty, E. A. [1 ]
机构
[1] Sohag Univ, Fac Sci, Math Dept, Comp Sci Sect, Sohag, Egypt
关键词
Neural networks; Support vector machine; Kernel functions; Quadratic Programming (QP);
D O I
10.1016/j.eij.2012.08.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new kernel function for improving the accuracy of the Support Vector Machines (SVMs) classification. The proposed kernel function is stated in general form and is called Gaussian Radial Basis Polynomials Function (GRPF) that combines both Gaussian Radial Basis Function (RBF) and Polynomial (POLY) kernels. We implement the proposed kernel with a number of parameters associated with the use of the SVM algorithm that can impact the results. A comparative analysis of SVMs versus the Multilayer Perception (MLP) for data classifications is also presented to verify the effectiveness of the proposed kernel function. We seek an answer to the question: "which kernel can achieve a high accuracy classification versus multi-layer neural networks''. The support vector machines are evaluated in comparisons with different kernel functions and multi-layer neural networks by application to a variety of nonseparable data sets with several attributes. It is shown that the proposed kernel gives good classification accuracy in nearly all the data sets, especially those of high dimensions. The use of the proposed kernel results in a better, performance than those with existing kernels. (C) 2012 Faculty of Computers and Information, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [21] Massive data classification via unconstrained support vector machines
    Mangasarian, O. L.
    Thompson, M. E.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (03) : 315 - 325
  • [22] Support Vector Machines with Weighted Powered Kernels for Data Classification
    Afif, Mohammed H.
    Hedar, Abdel-Rahman
    Hamid, Taysir H. Abdel
    Mahdy, Yousef B.
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 : 369 - 378
  • [23] An algorithm to cluster data for efficient classification of support vector machines
    Li, Der-Chiang
    Fang, Yao-Hwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (03) : 2013 - 2018
  • [24] Data classification using support vector machines with mixture kernels
    Wei, Liwei
    Wei, Chuanshen
    Wan, Xiaqing
    NANOTECHNOLOGY AND PRECISION ENGINEERING, PTS 1 AND 2, 2013, 662 : 936 - +
  • [25] Hyperspectral data classification using geostatistics and support vector machines
    Bahria, S.
    Essoussi, N.
    Limam, M.
    REMOTE SENSING LETTERS, 2011, 2 (02) : 99 - 106
  • [26] Applications of support vector machines to cancer classification with microarray data
    Chu, F
    Wang, LP
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2005, 15 (06) : 475 - 484
  • [27] Application of Support Vector Machines to Melissopalynological Data for Honey Classification
    Aronne, Giovanna
    De Micco, Veronica
    Guarracino, Mario R.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS, 2010, 1 (02) : 85 - 94
  • [28] Massive Data Classification via Unconstrained Support Vector Machines
    O. L. Mangasarian
    M. E. Thompson
    Journal of Optimization Theory and Applications, 2006, 131 : 315 - 325
  • [29] Effective software defect prediction using support vector machines (SVMs)
    Somya Goyal
    International Journal of System Assurance Engineering and Management, 2022, 13 : 681 - 696
  • [30] Protein Secondary Structure Prediction Using Support Vector Machines (SVMs)
    Patel, Mayuri
    Shah, Hitesh
    2013 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND RESEARCH ADVANCEMENT (ICMIRA 2013), 2013, : 594 - 598