ON EXISTENCE AND SCATTERING WITH MINIMAL REGULARITY FOR SEMILINEAR WAVE-EQUATIONS

被引:291
作者
LINDBLAD, H [1 ]
SOGGE, CD [1 ]
机构
[1] UNIV CALIF LOS ANGELES,LOS ANGELES,CA 90024
关键词
D O I
10.1006/jfan.1995.1075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and scattering results for semilinear wave equations with low regularity data. We also determine the minimal regularity that is needed to ensure local existence and well-posedness, and we give counterexamples to well-posedness. More specifically, we show that equations of the type square u=\ u \(p), with initial data (u, u(t)) in H-7(R(n))x H-y-1(R(n)), have a local solution if y greater than or equal to y(p, n), and we construct counterexamples if y < y(p, n). The existence results rely on mixed-norm space-time estimates of Strichartz-type. (C) 1995 Academic Press, Inc.
引用
收藏
页码:357 / 426
页数:70
相关论文
共 43 条
[31]   RESTRICTIONS OF FOURIER-TRANSFORMS TO QUADRATIC SURFACES AND DECAY OF SOLUTIONS OF WAVE-EQUATIONS [J].
STRICHARTZ, RS .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (03) :705-714
[32]   SEMILINEAR WAVE-EQUATIONS [J].
STRUWE, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (01) :53-85
[33]  
Struwe M., 1988, ANN SCUOLA NORM-SCI, V15, P495
[34]  
[No title captured]
[35]  
[No title captured]
[36]  
[No title captured]
[37]  
[No title captured]
[38]  
[No title captured]
[39]  
[No title captured]
[40]  
[No title captured]