ON EXISTENCE AND SCATTERING WITH MINIMAL REGULARITY FOR SEMILINEAR WAVE-EQUATIONS

被引:292
作者
LINDBLAD, H [1 ]
SOGGE, CD [1 ]
机构
[1] UNIV CALIF LOS ANGELES,LOS ANGELES,CA 90024
关键词
D O I
10.1006/jfan.1995.1075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and scattering results for semilinear wave equations with low regularity data. We also determine the minimal regularity that is needed to ensure local existence and well-posedness, and we give counterexamples to well-posedness. More specifically, we show that equations of the type square u=\ u \(p), with initial data (u, u(t)) in H-7(R(n))x H-y-1(R(n)), have a local solution if y greater than or equal to y(p, n), and we construct counterexamples if y < y(p, n). The existence results rely on mixed-norm space-time estimates of Strichartz-type. (C) 1995 Academic Press, Inc.
引用
收藏
页码:357 / 426
页数:70
相关论文
共 43 条
[1]   LP-LP'-ESTIMATES FOR FOURIER INTEGRAL-OPERATORS RELATED TO HYPERBOLIC EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1977, 152 (03) :273-286
[2]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[3]   THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION [J].
GINIBRE, J ;
SOFFER, A ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) :96-130
[4]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[5]   BLOW-UP THEOREMS FOR NONLINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) :183-203
[6]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[7]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774
[8]   ON LEBESGUE SPACE ESTIMATES FOR THE WAVE-EQUATION [J].
HARMSE, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (01) :229-248
[9]  
HORMANDER L, 1983, ANAL LINEAR PARTIAL, V1
[10]   BLOW-UP OF SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :235-268