SETS OF DETERMINATION FOR HARMONIC-FUNCTIONS

被引:10
|
作者
GARDINER, SJ
机构
关键词
D O I
10.2307/2154454
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let h denote a positive harmonic function on the open unit ball B of Euclidean space R(n) (n > 2). This paper characterizes those subsets E of B for which sup(E) H/h = sup(B) H/h or inf(E) H/h = inf(B) H/h for all harmonic functions H belonging to a specified class. In this regard we consider the classes of positive harmonic functions, differences of positive harmonic functions, and harmonic functions with a one-sided quasi-boundedness condition. We also consider the closely related question of representing functions on the sphere partial derivative B as sums of Poisson kernels corresponding to points in E.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 50 条