SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS - THE NONDIAGONAL CASE

被引:21
作者
ALFARO, M
MARCELLAN, F
REZOLA, ML
RONVEAUX, A
机构
[1] UNIV CARLOS III MADRID, DEPT MATEMAT, E-28911 LEGANES, SPAIN
[2] FAC UNIV NOTRE DAME PAIX, B-5000 NAMUR, BELGIUM
关键词
D O I
10.1006/jath.1995.1121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev type orthogonal polynomials have been the object of increasing interest in the last few years. In this paper we introduce a generalization of the usual Sobolev-type inner product and we compare it with the strict diagonal case. Zeros and asymptotic properties of these kinds of polynomial sequence are studied. (C) 1995 Academic Press, Inc.
引用
收藏
页码:266 / 287
页数:22
相关论文
共 50 条
[31]   On sobolev orthogonal polynomials with coherent pairs: The Laguerre case, type 1 [J].
Pan, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) :319-333
[32]   Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case [J].
Castillo, Kenier ;
Mello, Mirela V. ;
Rafaeli, Fernando R. .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (11) :1663-1671
[33]   On zero behavior of higher-order Sobolev-type discrete q-Hermite I orthogonal polynomials [J].
Huertas, Edmundo J. ;
Lastra, Alberto ;
Soria-Lorente, Anier ;
Soto-Larrosa, Victor .
NUMERICAL ALGORITHMS, 2025, 99 (01) :1-25
[34]   Second-Order Difference Equation for Sobolev-Type Orthogonal Polynomials. Part II: Computational Tools [J].
Filipuk, Galina ;
Manas-Manas, Juan F. ;
Moreno-Balcazar, Juan J. .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (04) :960-979
[35]   Zeros of Sobolev orthogonal polynomials of Hermite type [J].
de Bruin, MG ;
Groenevelt, WGM ;
Meijer, HG .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) :135-166
[36]   On some classical type Sobolev orthogonal polynomials [J].
Zagorodnyuk, Sergey M. .
JOURNAL OF APPROXIMATION THEORY, 2020, 250
[37]   Zeros of Sobolev orthogonal polynomials of Gegenbauer type [J].
Groenevelt, WGM .
JOURNAL OF APPROXIMATION THEORY, 2002, 114 (01) :115-140
[38]   The Laguerre-Sobolev-type orthogonal polynomials [J].
Duenas, Herbert ;
Marcellan, Francisco .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :421-440
[39]   On Freud-Sobolev type orthogonal polynomials [J].
Garza, Luis E. ;
Huertas, Edmundo J. ;
Marcellan, Francisco .
AFRIKA MATEMATIKA, 2019, 30 (3-4) :505-528
[40]   A difference operator of infinite order with Sobolev-type Charlier polynomials as eigenfunctions [J].
Bavinck, H .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (03) :281-291