SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS - THE NONDIAGONAL CASE

被引:21
作者
ALFARO, M
MARCELLAN, F
REZOLA, ML
RONVEAUX, A
机构
[1] UNIV CARLOS III MADRID, DEPT MATEMAT, E-28911 LEGANES, SPAIN
[2] FAC UNIV NOTRE DAME PAIX, B-5000 NAMUR, BELGIUM
关键词
D O I
10.1006/jath.1995.1121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev type orthogonal polynomials have been the object of increasing interest in the last few years. In this paper we introduce a generalization of the usual Sobolev-type inner product and we compare it with the strict diagonal case. Zeros and asymptotic properties of these kinds of polynomial sequence are studied. (C) 1995 Academic Press, Inc.
引用
收藏
页码:266 / 287
页数:22
相关论文
共 50 条
[21]   Asymptotic behavior of Sobolev-type orthogonal polynomials on a rectifiable Jordan curve or arc [J].
Branquinho, A ;
Moreno, AF ;
Marcellán, F .
CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) :161-182
[22]   Pastro polynomials and Sobolev-type orthogonal polynomials on the unit circle based on a q-difference operator [J].
Suni, M. Hancco ;
Marcellan, F. ;
Ranga, A. Sri .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (03) :315-343
[23]   Orthogonal polynomials associated with a nondiagonal Sobolev inner product with polynomial coefficients [J].
De Morales, MA ;
Perez, TE ;
Pinar, MA ;
Ronveaux, A .
ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 :343-358
[24]   Regular Sobolev type orthogonal polynomials: The Bessel case [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) :1431-1457
[25]   On differential equations for Sobolev-type Laguerre polynomials [J].
Koekoek, J ;
Koekoek, R ;
Bavinck, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) :347-393
[26]   A new approach to relative asymptotic behavior for discrete Sobolev-type orthogonal polynomials on the unit circle [J].
Castillo, Kenier .
APPLIED MATHEMATICS LETTERS, 2012, 25 (06) :1000-1004
[27]   On Freud–Sobolev type orthogonal polynomials [J].
Luis E. Garza ;
Edmundo J. Huertas ;
Francisco Marcellán .
Afrika Matematika, 2019, 30 :505-528
[28]   Second-order difference equation for Sobolev-type orthogonal polynomials: Part I: theoretical results [J].
Filipuk, Galina ;
Manas-Manas, Juan F. ;
Moreno-Balcazar, Juan J. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (07) :971-989
[29]   Differential operators having Sobolev-type Jacobi polynomials as eigenfunctions [J].
Bavinck, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 151 (02) :271-295
[30]   Differential operators having Sobolev-type Gegenbauer polynomials as eigenfunctions [J].
Bavinck, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :23-42