ON THE FAILURE OF THE URYSOHN-MENGER SUM FORMULA FOR COHOMOLOGICAL DIMENSION

被引:9
|
作者
DRANISNIKOV, AN [1 ]
REPOVS, D [1 ]
SCEPIN, EV [1 ]
机构
[1] VA STEKLOV MATH INST,MOSCOW 117966,RUSSIA
关键词
URYSOHN-MENGER SUM FORMULA; COHOMOLOGICAL DIMENSION; BOLTYANSKII COMPACTA; BOCKSTEIN INEQUALITIES; DIMENSION TYPE; COMPACTIFICATION; COMPLETION;
D O I
10.2307/2160247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the classical Urysohn-Menger sum formula, dim(A or B) less-than-or-equal-to dim A + dim B + 1, which is also known to be true for co-homological dimension over the integers (and some other abelian groups), does not hold for cohomological dimension over an arbitrary abelian group of coefficients. In particular, we prove that there exist subsets A , B subset-of R4 such that 4 = dim(Q/Z)(A or B) > dim(Q/z) A + dim(Q/z) B + 1 = 3.
引用
收藏
页码:1267 / 1270
页数:4
相关论文
empty
未找到相关数据