ON ESTIMATING THE MEAN FUNCTION OF A GAUSSIAN PROCESS

被引:2
作者
ANILKUMAR, P [1 ]
机构
[1] UNIV POONA,DEPT STAT,POONA 411007,MAHARASHTRA,INDIA
关键词
GAUSSIAN PROCESS; REPRODUCING KERNEL HILBERT SPACE; SIEVE ESTIMATION; CRAMER-RAO BOUND; ESTIMATING FUNCTION; BAYES ESTIMATORS;
D O I
10.1016/0167-7152(94)90071-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new estimator is proposed for the mean function of a Gaussian process with known covariance function. The estimator m(t) is interpreted from a Bayesian point of view. It is shown that the estimator is minimax within a certain subset of the parameter space.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 8 条
[1]  
Ash R. B., 1975, TOPICS STOCHASTIC PR
[2]   A SIEVE ESTIMATOR FOR THE MEAN OF A GAUSSIAN PROCESS [J].
BEDER, JH .
ANNALS OF STATISTICS, 1987, 15 (01) :59-78
[3]  
CHATTERJI SD, 1978, PROBABILISTIC ANAL R, V1
[4]  
Grenander U., 1981, ABSTRACT INFERENCE
[5]   ON CONVERGENCE-RATES IN NONPARAMETRIC PROBLEMS [J].
HALL, P .
INTERNATIONAL STATISTICAL REVIEW, 1989, 57 (01) :45-58
[6]  
Lehmann EH., 1983, THEORY POINT ESTIMAT
[7]  
LOEVE M, 1948, PROCESSES STOCHASTIQ
[8]   OPTIMAL UNBIASED STATISTICAL ESTIMATING FUNCTIONS FOR HILBERT-SPACE VALUED PARAMETERS [J].
SUBRAMANYAM, A ;
NAIKNIMBALKAR, UV .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 24 (01) :95-105