THE FILTERING PROBLEM FOR CONTINUOUS-TIME LINEAR-SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS

被引:39
作者
DUFOUR, F
BERTRAND, P
机构
[1] Laboratoire des Signaux et Systèmes (C.N.R.S.-E.S.E.) Plateau de Moulon
关键词
STOCHASTIC SYSTEMS; JUMP PARAMETERS; LINEAR HYBRID SYSTEMS; NONLINEAR FILTERING; OPTIMAL AND SUBOPTIMAL FILTER;
D O I
10.1016/0167-6911(94)90099-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stochastic model under consideration is a Markovian jump process theta, with finite state space, feeding the parameters of a linear diffusion process x. The processes y and z observe linearly and separately x and theta in independent white noises. Some properties of the finite optimal filter for the x and theta processes given the history of measurements z are investigated. Apart from their theoretical interest, these results have an interesting practical bearing on the general filtering problem, by providing a natural finite suboptimal solution. Preliminary experimental results show the effectiveness of our approach to estimate the state trajectory, even with a relatively low signal-to-noise ratio on the measurement processes.
引用
收藏
页码:453 / 461
页数:9
相关论文
共 18 条
[1]   FINITE DIMENSIONAL OPTIMAL FILTERS FOR A CLASS OF ITO-PROCESSES WITH JUMPING PARAMETERS. [J].
Bjork, T. .
Stochastics, 1980, 4 (02) :167-183
[2]   FINITE OPTIMAL FILTERS FOR A CLASS OF NONLINEAR DIFFUSIONS WITH JUMPING PARAMETERS. [J].
Bjork, Tomas .
Stochastics, 1982, 6 (02) :121-138
[3]  
DASHEVSKII ML, 1967, AUTOMAT TELEMEKH, V6, P63
[4]   TRACKING A 3D-MANEUVERING TARGET WITH PASSIVE SENSORS [J].
DUFOUR, F ;
MARITON, M .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1991, 27 (04) :725-739
[5]  
DUFOUR F, 1993, TRACKING PROBLEM
[6]  
DUFOUR F, 1993, UNPUB AUTOMATICA
[7]  
ERMOLIEV Y, 1980, NUMERICAL TECHNIQUES
[8]  
Kwakernaak H., 1975, LECT NOTES EC MATH S, V107, P468
[9]   NONLINEAR FILTERING FOR SYSTEMS WITH RANDOM STRUCTURE [J].
LOPARO, KA ;
ROTH, Z ;
ECKERT, SJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (11) :1064-1068
[10]  
LTSER RS, 1977, STATISTICS RANDOM PR, V1