Biofuels Production from Biomass by Thermochemical Conversion Technologies

被引:128
作者
Verma, M. [1 ,2 ]
Godbout, S. [1 ]
Brar, S. K. [3 ]
Solomatnikova, O. [2 ]
Lemay, S. P. [1 ]
Larouche, J. P. [1 ]
机构
[1] Inst Rech & Dev Agroenvironm Inc IRDA, 2700 Rue Einstein, Quebec City, PQ G1P 3W8, Canada
[2] CRIQ, Quebec City, PQ G1C 4C7, Canada
[3] INRS, ETE, Le Ctr Eau Terre Environm, Quebec City, PQ G1K 9A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1155/2012/542426
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Agricultural biomass as an energy resource has several environmental and economical advantages and has potential to substantially contribute to present days' fuel demands. Currently, thermochemical processes for agricultural biomass to energy transformation seem promising and feasible. The relative advantage of thermochemical conversion over others is due to higher productivity and compatibility with existing infrastructure facilities. However, the majority of these processes are still under development phase and trying to secure a market share due to various challenges, right from suitable infrastructure, raw material, technical limitations, government policies, and social acceptance. The knowledge at hand suggests that biomass can become a sustainable and major contributor to the current energy demands, if research and development are encouraged in the field of thermochemical conversion for various agricultural biomass types. This paper intends to explore the physical and chemical characteristics of biofuel substitutes of fossil fuels, potential biomass sources, and process parameters for thermochemical conversion.
引用
收藏
页数:18
相关论文
共 111 条
[1]   Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions [J].
Abdullah, Hanisom ;
Wu, Hongwei .
ENERGY & FUELS, 2009, 23 (08) :4174-4181
[2]   Fast pyrolysis of linseed: product yields and compositions [J].
Acikgoz, C ;
Onay, O ;
Kockar, OM .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2004, 71 (02) :417-429
[3]  
Appell H. R., 1977, FUELS FROM WASTE
[4]   Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GUMS [J].
Ates, Funda ;
Isikdag, Muejde Asli .
ENERGY & FUELS, 2008, 22 (03) :1936-1943
[5]   Fast Pyrolysis of African and European Lignocellulosic Biomasses Using Py-GC/MS and Fluidized Bed Reactor [J].
Azeez, Akeem M. ;
Meier, Dietrich ;
Odermatt, Juergen ;
Willner, Thomas .
ENERGY & FUELS, 2010, 24 (03) :2078-2085
[6]   Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs - A preliminary assessment [J].
Badger, PC ;
Fransham, P .
BIOMASS & BIOENERGY, 2006, 30 (04) :321-325
[7]   Biomass as an energy source: Thermodynamic constraints on the performance of the conversion process [J].
Baratieri, M. ;
Baggio, P. ;
Fiori, L. ;
Grigiante, A. .
BIORESOURCE TECHNOLOGY, 2008, 99 (15) :7063-7073
[8]   Composting of animal manures and chemical criteria for compost maturity assessment. A review [J].
Bernal, M. P. ;
Alburquerque, J. A. ;
Moral, R. .
BIORESOURCE TECHNOLOGY, 2009, 100 (22) :5444-5453
[9]   Wood/plastic copyrolysis in an auger reactor: Chemical and physical analysis of the products [J].
Bhattacharya, Priyanka ;
Steele, Philip H. ;
Hassan, El Barbary M. ;
Mitchell, Brian ;
Ingram, Leonard ;
Pittman, Charles U., Jr. .
FUEL, 2009, 88 (07) :1251-1260
[10]   Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production [J].
Boateng, Akwasi A. ;
Daugaard, Daren E. ;
Goldberg, Neil M. ;
Hicks, Kevin B. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) :1891-1897