SOLUTION OF LINEAR EQUATIONS WITH HANKEL AND TOEPLITZ MATRICES

被引:27
作者
RISSANEN, J [1 ]
机构
[1] LINKOPING UNIV,DEPT ELECT ENGN,S-581 83 LINKOPING,SWEDEN
关键词
D O I
10.1007/BF01436919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
[31]   Commutation relations for Toeplitz and Hankel matrices [J].
Gu, C ;
Patton, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :728-746
[32]   Product of Rectangular Toeplitz (Hankel) Matrices [J].
Bensliman, S. ;
Yagoub, A. ;
Toumache, K. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (11) :2510-2522
[33]   BALANCED RANDOM TOEPLITZ AND HANKEL MATRICES [J].
Basak, Anirban ;
Bose, Arup .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 :134-148
[34]   On conditions for permutability of Toeplitz and Hankel matrices [J].
Ikramov, Kh. D. ;
Chugunov, V. N. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (03) :354-357
[35]   On the Norms of Toeplitz and Hankel Matrices with Pell Numbers [J].
Karpuz, Eylem G. ;
Ates, Firat ;
Gungor, A. Dilek ;
Cangul, I. Naci ;
Cevik, A. Sinan .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :1117-+
[36]   Some remarks on Toeplitz multipliers and Hankel matrices [J].
Pelczynski, Aleksander ;
Sukochev, Fyodor .
STUDIA MATHEMATICA, 2006, 175 (02) :175-204
[37]   Bounded and compact Toeplitz plus Hankel matrices [J].
Ehrhardt, Torsten ;
Hagger, Raffael ;
Virtanen, Jani A. .
STUDIA MATHEMATICA, 2021, 260 (01) :103-120
[38]   TENSOR BASE OF HANKEL (OR TOEPLITZ) MATRICES - APPLICATIONS [J].
LAFON, JC .
NUMERISCHE MATHEMATIK, 1975, 23 (04) :349-361
[39]   Efficient quantum circuits for Toeplitz and Hankel matrices [J].
Mahasinghe, A. ;
Wang, J. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (27)
[40]   ON THE INVERSES OF TOEPLITZ-PLUS-HANKEL MATRICES [J].
HEINIG, G ;
ROST, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 106 :39-52