THE NEHARI PROBLEM FOR THE PRITCHARD-SALAMON CLASS OF INFINITE-DIMENSIONAL LINEAR-SYSTEMS - A DIRECT APPROACH

被引:12
作者
CURTAIN, R
ZWART, H
机构
[1] UNIV GRONINGEN,DEPT MATH,9700 AV GRONINGEN,NETHERLANDS
[2] TWENTE UNIV TECHNOL,FAC APPL MATH,7500 AE ENSCHEDE,NETHERLANDS
关键词
D O I
10.1007/BF01192456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete solution is obtained to the Nehari problem for symbols which have a realization as an exponentially stable Pritchard-Salamon system SIGMA(A, B, C). This allows for the possibility that B and C be unbounded and have infinite rank. The approach is to solve an equivalent J-spectral factorization problem for this particular realization.
引用
收藏
页码:130 / 153
页数:24
相关论文
共 29 条
[1]  
ADAMJAN VM, 1978, AM MATH SOC TRANSL, V111, P133
[2]  
Ball J.A., 1990, INTERPOLATION RATION
[3]  
BALL JA, 1983, J OPERAT THEOR, V9, P107
[4]  
BALL JA, 1986, IDENTIFICATION ROBUS, P285
[5]  
BART H, 1986, J FUNCT ANAL, V86, P1
[6]  
BART H, 1986, ADV APPLICATIONS, V21, P39
[7]  
Bart H., 1979, MINIMAL FACTORIZATIO
[8]  
Curtain R., 1978, LNCIS, V8
[9]   EQUIVALENCE OF INPUT OUTPUT STABILITY AND EXPONENTIAL STABILITY FOR INFINITE-DIMENSIONAL SYSTEMS [J].
CURTAIN, RF .
MATHEMATICAL SYSTEMS THEORY, 1988, 21 (01) :19-48
[10]   ROBUST STABILIZABILITY OF NORMALIZED COPRIME FACTORS - THE INFINITE-DIMENSIONAL CASE [J].
CURTAIN, RF .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) :1173-1190