Backpropagation to train an evolving radial basis function neural network

被引:17
作者
de Jesus Rubio, Jose [1 ]
Vazquez, Diana M. [1 ]
Pacheco, Jaime [1 ]
机构
[1] Inst Politecn Nacl, ESIME Azcapotzalco, Secc Estud Posgrado & Invest, Av Granjas, 682 Col Sta Catarina, Mexico City 02250, DF, Mexico
关键词
Evolving systems; Fuzzy neural networks; Clustering; Backpropagation; Stability;
D O I
10.1007/s12530-010-9015-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a stable backpropagation algorithm is used to train an online evolving radial basis function neural network. Structure and parameters learning are updated at the same time in our algorithm, we do not make difference in structure learning and parameters learning. It generates groups with an online clustering. The center is updated to achieve the center is near to the incoming data in each iteration, so the algorithm does not need to generate a new neuron in each iteration, i.e., the algorithm does not generate many neurons and it does not need to prune the neurons. We give a time varying learning rate for backpropagation training in the parameters. We prove the stability of the proposed algorithm.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 23 条
[1]  
Angelov P, 2005, IEEE INT CONF FUZZY, P1068
[2]   Evolving fuzzy systems from data streams in real-time [J].
Angelov, Plamen ;
Zhou, Xiaowei .
2006 INTERNATIONAL SYMPOSIUM ON EVOLVING FUZZY SYSTEMS, PROCEEDINGS, 2006, :29-+
[3]   Autonomous Novelty Detection and Object Tracking in Video Streams using Evolving Clustering and Takagi-Sugeno type Neuro-Fuzzy System [J].
Angelov, Plamen ;
Ramezani, Ramin ;
Zhou, Xiaowei .
2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, :1456-1463
[4]   Flexible models with evolving structure [J].
Angelov, PP ;
Filev, DP .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2004, 19 (04) :327-340
[5]   An approach to Online identification of Takagi-Suigeno fuzzy models [J].
Angelov, PP ;
Filev, DP .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :484-498
[6]  
Chiu SL., 1994, J INTELL FUZZY SYST, V2, P267, DOI [DOI 10.3233/IFS-1994-2306, 10.3233/IFS-1994-2306]
[7]  
Hassibi B., 1993, ADV NEURAL INFORM PR, P164
[8]  
Hilera Gonzalez JR, 1995, REDES NEURONALES ART
[9]   Recursive (G)ath-Geva clustering as a basis for evolving neuro-fuzzy modeling [J].
Hossein, Soleimani-B. ;
Lucas, Caro ;
Araabi, Babak N. .
EVOLVING SYSTEMS, 2010, 1 (01) :59-71
[10]  
Iglesias JA, 2010, EVOL SYST, V3