SCALAR CASIMIR EFFECT FOR A D-DIMENSIONAL SPHERE

被引:146
作者
BENDER, CM [1 ]
MILTON, KA [1 ]
机构
[1] UNIV OKLAHOMA,DEPT PHYS & ASTRON,NORMAN,OK 73019
来源
PHYSICAL REVIEW D | 1994年 / 50卷 / 10期
关键词
D O I
10.1103/PhysRevD.50.6547
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Casimir stress on a D-dimensional sphere (the stress on a sphere is equal to the Casimir force per unit area multiplied by the area of the sphere) due to the confinement of a massless scalar field is computed as a function of D, where D is a continuous variable that ranges from - to. The dependence of the stress on the dimension is obtained using a simple and straightforward Greens function technique. We find that the Casimir stress vanishes as D + (D is a noneven integer) and also vanishes when D is a negative even integer. The stress has simple poles at positive even integer values of D. © 1994 The American Physical Society.
引用
收藏
页码:6547 / 6555
页数:9
相关论文
共 20 条
[1]  
ABRAMOWITZ M, 1964, HDB MATH FUNCTIONS, pCH22
[2]   PROPERTIES OF THE VACUUM .1. MECHANICAL AND THERMODYNAMIC [J].
AMBJORN, J ;
WOLFRAM, S .
ANNALS OF PHYSICS, 1983, 147 (01) :1-32
[3]   ELECTROMAGNETIC-WAVES NEAR PERFECT CONDUCTORS .2. CASIMIR EFFECT [J].
BALIAN, R ;
DUPLANTIER, B .
ANNALS OF PHYSICS, 1978, 112 (01) :165-208
[4]   RANDOM-WALKS IN NONINTEGER DIMENSION [J].
BENDER, CM ;
BOETTCHER, S ;
MEAD, LR .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) :368-388
[5]   SEMI-CLASSICAL PERTURBATION-THEORY FOR THE HYDROGEN-ATOM IN A UNIFORM MAGNETIC-FIELD [J].
BENDER, CM ;
MLODINOW, LD ;
PAPANICOLAOU, N .
PHYSICAL REVIEW A, 1982, 25 (03) :1305-1314
[6]   DETERMINATION OF F(INFINITY) FROM THE ASYMPTOTIC SERIES FOR F(X) ABOUT X=0 [J].
BENDER, CM ;
BOETTCHER, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1914-1921
[7]   DIMENSIONAL EXPANSIONS [J].
BENDER, CM ;
BOETTCHER, S ;
LIPATOV, L .
PHYSICAL REVIEW LETTERS, 1992, 68 (25) :3674-3677
[8]   ALMOST ZERO-DIMENSIONAL QUANTUM-FIELD THEORIES [J].
BENDER, CM ;
BOETTCHER, S ;
LIPATOV, L .
PHYSICAL REVIEW D, 1992, 46 (12) :5557-5573
[9]   SPHERICALLY SYMMETRICAL RANDOM-WALKS IN NONINTEGER DIMENSION [J].
BENDER, CM ;
BOETTCHER, S ;
MOSHE, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4941-4963
[10]   DIMENSIONAL EXPANSION FOR THE ISING LIMIT OF QUANTUM-FIELD THEORY [J].
BENDER, CM ;
BOETTCHER, S .
PHYSICAL REVIEW D, 1993, 48 (10) :4919-4923