A PURELY LAGRANGIAN METHOD FOR THE NUMERICAL-INTEGRATION OF FOKKER-PLANCK EQUATIONS

被引:3
|
作者
COMBIS, P [1 ]
FRONTEAU, J [1 ]
机构
[1] UNIV ORLEANS,DEPT PHYS,F-45067 ORLEANS 2,FRANCE
来源
EUROPHYSICS LETTERS | 1986年 / 2卷 / 03期
关键词
D O I
10.1209/0295-5075/2/3/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [11] Numerical approach to Fokker-Planck equations for Brownian motors
    Kostur, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (09): : 1157 - 1176
  • [12] Numerical solution of two dimensional Fokker-Planck equations
    Zorzano, M.P.
    Mais, H.
    Vazquez, L.
    Applied Mathematics and Computation (New York), 1999, 98 (2-3): : 109 - 117
  • [13] Numerical solution of two dimensional Fokker-Planck equations
    Zorzano, MP
    Mais, H
    Vazquez, L
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) : 109 - 117
  • [14] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [15] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [16] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [17] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [18] A New Numerical Method for Solving Nonlinear Fractional Fokker-Planck Differential Equations
    Guo, BeiBei
    Jiang, Wei
    Zhang, ChiPing
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):
  • [19] Interval Wavelet Numerical Method on Fokker-Planck Equations for Nonlinear Random System
    Liu, Li-wei
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [20] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666