Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease

被引:31
作者
Chatterjee, Tapan K. [1 ]
Basford, Joshua E. [2 ]
Yiew, Kan Hui [3 ]
Stepp, David W. [4 ]
Hui, David Y. [2 ]
Weintraub, Neal L. [1 ]
机构
[1] Georgia Regents Univ, Vasc Biol Ctr, Dept Internal Med, Augusta, GA 30912 USA
[2] Univ Cincinnati, Metab Dis Inst, Dept Pathol, Cincinnati, OH USA
[3] Georgia Regents Univ, Vasc Biol Ctr, Dept Pharmacol, Augusta, GA USA
[4] Georgia Regents Univ, Vasc Biol Ctr, Dept Physiol, Augusta, GA USA
关键词
adipogenic differentiation; histone deacetylase 9; fibroblast growth factor 21; beige adipocytes; adaptive thermogenesis; energy expenditure; high fat diet; obesity; adipose tissue dysfunction; insulin resistance; glucose intolerance; ectopic lipid accumulation; metabolic disease;
D O I
10.4161/adip.28814
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A dipose tissue serves as both a storage site for excess calories and as an endocrine organ, secreting hormones such as adiponectin that promote metabolic homeostasis. In obesity, adipose tissue expands primarily by hypertrophy (enlargement of existing adipocytes) rather than hyperplasia (generation of new adipocytes via adipogenic differentiation of preadipocytes). Progressive adipocyte hypertrophy leads to inflammation, insulin resistance, dyslipidemia, and ectopic lipid deposition, the hallmark characteristics of metabolic disease. We demonstrate that during chronic high fat feeding in mice, adipogenic differentiation is impaired due to the actions of histone deacetylase 9 (HDAC9), a member of the class II family of HDACs. Mechanistically, upregulated HDAC9 expression blocks the adipogenic differentiation program during chronic high fat feeding, leading to accumulation of improperly differentiated adipocytes with diminished expression of adiponectin. These adipocytes are inefficient at storing lipid, resulting in ectopic lipid deposition in the liver. HDAC9 gene deletion prevents the detrimental effects of chronic high fat feeding on adipogenic differentiation, increases adiponectin expression, and enhances energy expenditure by promoting beige adipogenesis, thus leading to reduced body mass and improved metabolic homeostasis. HDAC9 is therefore emerging as a critical regulator of adipose tissue health and a novel therapeutic target for obesity-related disease.
引用
收藏
页码:333 / 338
页数:6
相关论文
共 50 条
  • [11] Myocyte Enhancer Factor-2 Interacting Transcriptional Repressor (MITR) Is a Switch That Promotes Osteogenesis and Inhibits Adipogenesis of Mesenchymal Stem Cells by Inactivating Peroxisome Proliferator-activated Receptor γ-2
    Chen, Ya-Huey
    Yeh, Fang-Ling
    Yeh, Su-Peng
    Ma, Haou-Tzong
    Hung, Shih-Chieh
    Hung, Mien-Chie
    Li, Long-Yuan
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (12) : 10671 - 10680
  • [12] The Role of Fibroblast Growth Factor 21 (FGF21) on Energy Balance, Glucose and Lipid Metabolism
    Cuevas-Ramos, Daniel
    Almeda-Valdes, Paloma
    Aguilar-Salinas, Carlos A.
    Cuevas-Ramos, Gabriel
    Cuevas-Sosa, Andres A.
    Gomez-Perez, Francisco J.
    [J]. CURRENT DIABETES REVIEWS, 2009, 5 (04) : 216 - 220
  • [13] FGF21 mediates the lipid metabolism response to amino acid starvation
    De Sousa-Coelho, Ana Luisa
    Relat, Joana
    Hondares, Elayne
    Perez-Marti, Albert
    Ribas, Francesc
    Villarroya, Francesc
    Marrero, Pedro F.
    Haro, Diego
    [J]. JOURNAL OF LIPID RESEARCH, 2013, 54 (07) : 1786 - 1797
  • [14] FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
    Fisher, Ffolliott M.
    Kleiner, Sandra
    Douris, Nicholas
    Fox, Elliott C.
    Mepani, Rina J.
    Verdeguer, Francisco
    Wu, Jun
    Kharitonenkov, Alexei
    Flier, Jeffrey S.
    Maratos-Flier, Eleftheria
    Spiegelman, Bruce M.
    [J]. GENES & DEVELOPMENT, 2012, 26 (03) : 271 - 281
  • [15] Treating Diabetes and Obesity with an FGF21-Mimetic Antibody Activating the βKlotho/FGFR1c Receptor Complex
    Foltz, Ian N.
    Hu, Sylvia
    King, Chadwick
    Wu, Xinle
    Yang, Chaofeng
    Wang, Wei
    Weiszmann, Jennifer
    Stevens, Jennitte
    Chen, Jiyun Sunny
    Nuanmanee, Noi
    Gupte, Jamila
    Komorowski, Renee
    Sekirov, Laura
    Hager, Todd
    Arora, Taruna
    Ge, Hongfei
    Baribault, Helene
    Wang, Fen
    Sheng, Jackie
    Karow, Margaret
    Wang, Minghan
    Luo, Yongde
    McKeehan, Wallace
    Wang, Zhulun
    Veniant, Murielle M.
    Li, Yang
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (162)
  • [16] The Effects of LY2405319, an FGF21 Analog, in Obese Human Subjects with Type 2 Diabetes
    Gaich, Gregory
    Chien, Jenny Y.
    Fu, Haoda
    Glass, Leonard C.
    Deeg, Mark A.
    Holland, William L.
    Kharitonenkov, Alexei
    Bumol, Thomas
    Schilske, Holger K.
    Moller, David E.
    [J]. CELL METABOLISM, 2013, 18 (03) : 333 - 340
  • [17] Inhibition of Class I Histone Deacetylases Unveils a Mitochondrial Signature and Enhances Oxidative Metabolism in Skeletal Muscle and Adipose Tissue
    Galmozzi, Andrea
    Mitro, Nico
    Ferrari, Alessandra
    Gers, Elise
    Gilardi, Federica
    Godio, Cristina
    Cermenati, Gaia
    Gualerzi, Alice
    Donetti, Elena
    Rotili, Dante
    Valente, Sergio
    Guerrini, Uliano
    Caruso, Donatella
    Mai, Antonello
    Saez, Enrique
    De Fabiani, Emma
    Crestani, Maurizio
    [J]. DIABETES, 2013, 62 (03) : 732 - 742
  • [18] Adipose tissue inflammation: are small or large fat cells to blame?
    Hauner, H.
    [J]. DIABETOLOGIA, 2010, 53 (02) : 223 - 225
  • [19] Secretory factors from human adipose tissue and their functional role
    Hauner, H
    [J]. PROCEEDINGS OF THE NUTRITION SOCIETY, 2005, 64 (02) : 163 - 169
  • [20] Brown and white fat: From signaling to disease Preface
    Herzig, S.
    Wolfrum, C.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2013, 1831 (05): : 895 - 895