Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease

被引:31
作者
Chatterjee, Tapan K. [1 ]
Basford, Joshua E. [2 ]
Yiew, Kan Hui [3 ]
Stepp, David W. [4 ]
Hui, David Y. [2 ]
Weintraub, Neal L. [1 ]
机构
[1] Georgia Regents Univ, Vasc Biol Ctr, Dept Internal Med, Augusta, GA 30912 USA
[2] Univ Cincinnati, Metab Dis Inst, Dept Pathol, Cincinnati, OH USA
[3] Georgia Regents Univ, Vasc Biol Ctr, Dept Pharmacol, Augusta, GA USA
[4] Georgia Regents Univ, Vasc Biol Ctr, Dept Physiol, Augusta, GA USA
关键词
adipogenic differentiation; histone deacetylase 9; fibroblast growth factor 21; beige adipocytes; adaptive thermogenesis; energy expenditure; high fat diet; obesity; adipose tissue dysfunction; insulin resistance; glucose intolerance; ectopic lipid accumulation; metabolic disease;
D O I
10.4161/adip.28814
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A dipose tissue serves as both a storage site for excess calories and as an endocrine organ, secreting hormones such as adiponectin that promote metabolic homeostasis. In obesity, adipose tissue expands primarily by hypertrophy (enlargement of existing adipocytes) rather than hyperplasia (generation of new adipocytes via adipogenic differentiation of preadipocytes). Progressive adipocyte hypertrophy leads to inflammation, insulin resistance, dyslipidemia, and ectopic lipid deposition, the hallmark characteristics of metabolic disease. We demonstrate that during chronic high fat feeding in mice, adipogenic differentiation is impaired due to the actions of histone deacetylase 9 (HDAC9), a member of the class II family of HDACs. Mechanistically, upregulated HDAC9 expression blocks the adipogenic differentiation program during chronic high fat feeding, leading to accumulation of improperly differentiated adipocytes with diminished expression of adiponectin. These adipocytes are inefficient at storing lipid, resulting in ectopic lipid deposition in the liver. HDAC9 gene deletion prevents the detrimental effects of chronic high fat feeding on adipogenic differentiation, increases adiponectin expression, and enhances energy expenditure by promoting beige adipogenesis, thus leading to reduced body mass and improved metabolic homeostasis. HDAC9 is therefore emerging as a critical regulator of adipose tissue health and a novel therapeutic target for obesity-related disease.
引用
收藏
页码:333 / 338
页数:6
相关论文
共 50 条
[11]   Myocyte Enhancer Factor-2 Interacting Transcriptional Repressor (MITR) Is a Switch That Promotes Osteogenesis and Inhibits Adipogenesis of Mesenchymal Stem Cells by Inactivating Peroxisome Proliferator-activated Receptor γ-2 [J].
Chen, Ya-Huey ;
Yeh, Fang-Ling ;
Yeh, Su-Peng ;
Ma, Haou-Tzong ;
Hung, Shih-Chieh ;
Hung, Mien-Chie ;
Li, Long-Yuan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (12) :10671-10680
[12]   The Role of Fibroblast Growth Factor 21 (FGF21) on Energy Balance, Glucose and Lipid Metabolism [J].
Cuevas-Ramos, Daniel ;
Almeda-Valdes, Paloma ;
Aguilar-Salinas, Carlos A. ;
Cuevas-Ramos, Gabriel ;
Cuevas-Sosa, Andres A. ;
Gomez-Perez, Francisco J. .
CURRENT DIABETES REVIEWS, 2009, 5 (04) :216-220
[13]   FGF21 mediates the lipid metabolism response to amino acid starvation [J].
De Sousa-Coelho, Ana Luisa ;
Relat, Joana ;
Hondares, Elayne ;
Perez-Marti, Albert ;
Ribas, Francesc ;
Villarroya, Francesc ;
Marrero, Pedro F. ;
Haro, Diego .
JOURNAL OF LIPID RESEARCH, 2013, 54 (07) :1786-1797
[14]   FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis [J].
Fisher, Ffolliott M. ;
Kleiner, Sandra ;
Douris, Nicholas ;
Fox, Elliott C. ;
Mepani, Rina J. ;
Verdeguer, Francisco ;
Wu, Jun ;
Kharitonenkov, Alexei ;
Flier, Jeffrey S. ;
Maratos-Flier, Eleftheria ;
Spiegelman, Bruce M. .
GENES & DEVELOPMENT, 2012, 26 (03) :271-281
[15]   Treating Diabetes and Obesity with an FGF21-Mimetic Antibody Activating the βKlotho/FGFR1c Receptor Complex [J].
Foltz, Ian N. ;
Hu, Sylvia ;
King, Chadwick ;
Wu, Xinle ;
Yang, Chaofeng ;
Wang, Wei ;
Weiszmann, Jennifer ;
Stevens, Jennitte ;
Chen, Jiyun Sunny ;
Nuanmanee, Noi ;
Gupte, Jamila ;
Komorowski, Renee ;
Sekirov, Laura ;
Hager, Todd ;
Arora, Taruna ;
Ge, Hongfei ;
Baribault, Helene ;
Wang, Fen ;
Sheng, Jackie ;
Karow, Margaret ;
Wang, Minghan ;
Luo, Yongde ;
McKeehan, Wallace ;
Wang, Zhulun ;
Veniant, Murielle M. ;
Li, Yang .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (162)
[16]   The Effects of LY2405319, an FGF21 Analog, in Obese Human Subjects with Type 2 Diabetes [J].
Gaich, Gregory ;
Chien, Jenny Y. ;
Fu, Haoda ;
Glass, Leonard C. ;
Deeg, Mark A. ;
Holland, William L. ;
Kharitonenkov, Alexei ;
Bumol, Thomas ;
Schilske, Holger K. ;
Moller, David E. .
CELL METABOLISM, 2013, 18 (03) :333-340
[17]   Inhibition of Class I Histone Deacetylases Unveils a Mitochondrial Signature and Enhances Oxidative Metabolism in Skeletal Muscle and Adipose Tissue [J].
Galmozzi, Andrea ;
Mitro, Nico ;
Ferrari, Alessandra ;
Gers, Elise ;
Gilardi, Federica ;
Godio, Cristina ;
Cermenati, Gaia ;
Gualerzi, Alice ;
Donetti, Elena ;
Rotili, Dante ;
Valente, Sergio ;
Guerrini, Uliano ;
Caruso, Donatella ;
Mai, Antonello ;
Saez, Enrique ;
De Fabiani, Emma ;
Crestani, Maurizio .
DIABETES, 2013, 62 (03) :732-742
[18]   Adipose tissue inflammation: are small or large fat cells to blame? [J].
Hauner, H. .
DIABETOLOGIA, 2010, 53 (02) :223-225
[19]   Secretory factors from human adipose tissue and their functional role [J].
Hauner, H .
PROCEEDINGS OF THE NUTRITION SOCIETY, 2005, 64 (02) :163-169
[20]   Brown and white fat: From signaling to disease Preface [J].
Herzig, S. ;
Wolfrum, C. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2013, 1831 (05) :895-895