Color image retrieval using statistical model and radial basis function neural network

被引:7
|
作者
Seetharaman, K. [1 ]
Sathiamoorthy, S. [1 ]
机构
[1] Annamalai Univ, Dept Comp Sci & Engn, Annamalainagar 608002, Tamil Nadu, India
关键词
Full range auto regressive model; Radial basis function neural network; Color autocorrelogram; Edge histogram descriptor; Micro-texture;
D O I
10.1016/j.eij.2014.02.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new and effective framework for color image retrieval based on Full Range Autoregressive Model (FRAR). Bayesian approach (BA) is used to estimate the parameters of the FRAR model. The color autocorrelogram, a new version of edge histogram descriptor (EHD) and micro-texture (MT) features are extracted using a common framework based on the FRAR model with BA. The extracted features are combined to form a feature vector, which is normalized and stored in image feature vector database. The feature vector database is categorized according to the nature of the images using the radial basis function neural network (RBFNN) and k-means clustering algorithm. The proposed system adopted Manhattan distance measure of order one to measure the similarity between the query and target images in the categorized and indexed feature vector database. The query refinement approach of short-term learning based relevance feedback mechanism is adopted to reduce the semantic gap. The experimental results, based on precision and recall method are reported. It demonstrates the performance of the improved EHD, effectiveness and efficiency achieved by the proposed framework. (C) 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 50 条
  • [1] An improved radial basis function neural network for object image retrieval
    Montazer, Gholam Ali
    Giveki, Davar
    NEUROCOMPUTING, 2015, 168 : 221 - 233
  • [2] Atmospheric temperature retrieval using a radial basis function neural network
    Laboratorio Associado de Computacao e Matematica Aplicada - LAC, Instituto Nacional de Pesquisas Espaciais - INPE, Sao Jose dos Campos, SP, Brazil
    不详
    不详
    Int. J. Inf. Commun. Technol., 2008, 2 (224-239):
  • [3] Region-based image retrieval using radial basis function network
    Wu, Kui
    Yap, Kim-Hui
    Chau, Lap-Pui
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 1777 - 1780
  • [4] Color image demosaicing using sparse based radial basis function network
    Prakash, V. N. V. Satya
    Prasad, K. Satya
    Prasad, T. Jaya Chandra
    ALEXANDRIA ENGINEERING JOURNAL, 2017, 56 (04) : 477 - 483
  • [5] Statistical inference in a redesigned Radial Basis Function neural network
    Praga-Alejo, Rolando J.
    Gonzalez-Gonzalez, David S.
    Cantu-Sifuentes, Mario
    Perez-Villanueva, Pedro
    Torres-Trevino, Luis M.
    Flores-Hermosillo, Bernardo D.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (08) : 1881 - 1891
  • [6] Multivariate statistical inference in a radial basis function neural network
    de Leon-Delgado, Homero
    Praga-Alej, Rolando J.
    Gonzalez-Gonzalez, David S.
    Cantu-Sifuentes, Mario
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 93 : 313 - 321
  • [7] Polarimetric SAR Image Classification Using Radial Basis Function Neural Network
    Ince, Turker
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 60 - 65
  • [8] An alternate radial basis function neural network model
    Azam, F
    VanLandingham, HF
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2679 - 2684
  • [9] Radial basis function neural network for a traffic model
    Luo, Zanwen
    Wu, Zhijian
    Han, Zengjin
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (09): : 106 - 110
  • [10] Radial Basis Function for Visual Image Retrieval
    Flores-Pulido, Leticia
    Rodriguez-Gomez, Gustavo
    Starostenko, Oleg
    Santacruz-Olmos, Carlos
    2010 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2010), 2010, : 383 - 387