Categorifying fractional Euler characteristics, Jones-Wenzl projectors and 3j-symbols

被引:39
作者
Frenkel, Igor [1 ]
Stroppel, Catharina [2 ]
Sussan, Joshua [3 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
[3] Mercy Coll, Dept Math & Comp Sci, Dobbs Ferry, NY 10522 USA
基金
美国国家科学基金会;
关键词
3j-symbols; quantum groups; Jones polynomial; complete intersections; Euler characteristic; Harish-Chandra bimodules; category O; Kazhdan-Lusztig polynomials; 3-manifold invariants; categorification;
D O I
10.4171/QT/28
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the representation theory of the smallest quantum group and its categorification. The first part of the paper contains an easy visualization of the 3j-symbols in terms of weighted signed line arrangements in a fixed triangle and new binomial expressions for the 3j-symbols. All these formulas are realized as graded Euler characteristics. The 3j-symbols appear as new generalizations of Kazhdan-Lusztig polynomials. A crucial result of the paper is that complete intersection rings can be employed to obtain rational Euler characteristics, hence to categorify rational quantum numbers. This is the main tool for our categorification of the Jones-Wenzl projector, Theta-networks and tetrahedron networks. Networks and their evaluations play an important role in the Turaev-Viro construction of 3-manifold invariants. We categorify these evaluations by Ext-algebras of certain simple Harish-Chandra bimodules. The relevance of this construction to categorified colored Jones invariants and invariants of 3-manifolds will be studied in detail in subsequent papers.
引用
收藏
页码:181 / 253
页数:73
相关论文
共 68 条
[1]  
Achar P., 2011, ARXIV11052715
[2]   On selfadjoint functors satisfying polynomial relations [J].
Agerholm, Troels ;
Mazorchuk, Volodymyr .
JOURNAL OF ALGEBRA, 2011, 330 (01) :448-467
[3]  
Avramov LL, 1998, PROG MATH, V166, P1
[4]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[5]   Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links [J].
Beliakova, Anna ;
Wehrli, Stephan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (06) :1240-1266
[6]  
Bernstein IN., 1976, FUNCT ANAL APPL+, V10, P87, DOI 10.1007/BF01077933
[7]  
Bernstein J., 1999, SELECTA MATH, V5, P199, DOI DOI 10.1007/S000290050047
[8]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245
[9]  
Bona M., 2007, INTRO ENUMERATIVE CO
[10]  
Brundan J, 2011, MOSC MATH J, V11, P685