HIGH-FREQUENCY APPROXIMATION OF INTEGRAL-EQUATIONS MODELING SCATTERING PHENOMENA

被引:4
作者
DELABOURDONNAYE, A
机构
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1994年 / 28卷 / 02期
关键词
D O I
10.1051/m2an/1994280202231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new way of discretizing integral equations coming from high frequency wave propagation. Indeed, using the eikonal equation, we will write that the solution is locally the product of an amplitude by an oscillating function whose phase gradient modulus is the wave number. Discretizing in order to keep this relation, we will show that, is the limit of high frequencies, the matrices we obtain are sparse (as sparse as volumic finite-element methods, in fact), which is not the case with the classical way of discretizing for example with P1-Lagrange or H(div) (see [11] or [13]) finite elements. More precisely, if N is the number of degrees of freedom, we lower the complexity from O(N2) to O(N).
引用
收藏
页码:223 / 241
页数:19
相关论文
共 17 条
[1]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[2]  
CANNING FX, 1992, SIAM J SCI STAT COMP, V13
[3]  
Chazarain J., 1981, INTRO THEORIE EQUATI
[4]  
COLTON P, 1993, PURE APPLIED MATH
[5]  
DELABOURDONNAYE A, 1991, THESIS ECOLE POLYTEC
[6]  
DUISTERMAAT J, 1973, FOURIER INTEGRAL OPE
[7]  
FOCK VA, 1946, J PHYS USSR, V10, P130
[8]  
GUILLEMIN V, 1973, V AMS, V79
[9]  
HAMDI MA, 1981, CR ACAD SCI II, V292, P17