ON THE PROPERTY OF MONOTONIC CONVERGENCE FOR MULTIVARIATE BERNSTEIN-TYPE OPERATORS

被引:13
作者
ADELL, JA [1 ]
DELACAL, J [1 ]
SANMIGUEL, M [1 ]
机构
[1] UNIV BASQUE COUNTRY, FAC CIENCIAS, DEPT MATEMAT APLICADA & ESTADIST & INVEST OPERAT, E-48080 BILBAO, SPAIN
关键词
D O I
10.1006/jath.1995.1008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use probabilistic methods to show that a large class of sequences (L(n)) of multivariate Bernstein-type operators satisfy the inequality L(n)(f, x) greater than or equal to L(n+1)(f, x), whenever f is a convex function. (C) 1995 Academic Press, Inc.
引用
收藏
页码:132 / 137
页数:6
相关论文
共 11 条
[1]  
BLEIMANN G., 1980, INDAG MATH, V42, P255
[2]   THE CONVEXITY OF BERNSTEIN POLYNOMIALS OVER TRIANGLES [J].
CHANG, GZ ;
DAVIS, PJ .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (01) :11-28
[3]   BERNSTEIN POWER SERIES [J].
CHENEY, EW ;
SHARMA, A .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (02) :241-&
[4]  
Johnson N.L., 1969, DISCRETE DISTRIBUTIO
[5]  
Khan M. K., 1991, PROGR APPROXIMATION, P483
[6]   SOME PROBABILISTIC METHODS IN THE THEORY OF APPROXIMATION OPERATORS [J].
KHAN, RA .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 35 (1-2) :193-203
[7]  
KHAN RA, 1991, PROGR APPROXIMATION, P497
[8]  
Scalora F. S., 1961, PAC J MATH, V11, P347
[9]  
Schoenberg I.J., 1959, NUMERICAL APPROXIMAT, P249
[10]  
Shreve S., 1987, BROWNIAN MOTION STOC