EXISTENCE, UNIQUENESS AND INVARIANT-MEASURES FOR STOCHASTIC SEMILINEAR EQUATIONS ON HILBERT-SPACES

被引:64
作者
CHOJNOWSKAMICHALIK, A [1 ]
GOLDYS, B [1 ]
机构
[1] UNIV NEW S WALES,SCH MATH,SYDNEY,NSW 2052,AUSTRALIA
关键词
D O I
10.1007/BF01192465
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A class of stochastic evolution equations with additive noise and weakly continuous drift is considered. First, regularity properties of the corresponding Ornstein-Uhlenbeck transition semigroup R(t) are obtained. We show that R(t) is a compact C-o-semigroup in all Sobolev spaces W-n,W-p which are built on its invariant measure mu. Then we show the existence, uniqueness, compactness and smoothing properties of the transition semigroup for semilinear equations in L(P)(mu) spaces and spaces W-1,W-p. As a consequence we prove the uniqueness of martingale solutions to the stochastic equation and the existence of a unique invariant measure equivalent to mu. It is shown also that the density of this measure with respect to mu is in L(p)(mu) for, all p greater than or equal to 1.
引用
收藏
页码:331 / 356
页数:26
相关论文
共 21 条
  • [11] Hille E., 1957, FUNCTIONAL ANAL SEMI
  • [12] KRASNOSELSKII MA, 1960, SOV MATH DOKL, V1, P229
  • [13] QUALITATIVE BEHAVIOR OF SOLUTIONS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS
    MANTHEY, R
    MASLOWSKI, B
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 43 (02) : 265 - 289
  • [14] Maslowski B., 1993, STOCHASTICS STOCHAST, V45, P17, DOI [10.1080/17442509308833854, DOI 10.1080/17442509308833854]
  • [15] Maslowski B., 1989, STOCHASTIC SYSTEMS O, V136, P210, DOI [10.1007/BFb0002683, DOI 10.1007/BFB0002683]
  • [16] PESZAT S, UNPUB STRONG FELLER
  • [17] PESZAT S, 1993, 510 POL AC SCI I MAT
  • [18] Prato G. Da, 1992, STOCHASTIC EQUATIONS
  • [19] Rozovskii B. L., 1990, STOCHASTIC EVOLUTION
  • [20] SHIGEKAWA I, 1987, OSAKA J MATH, V24, P37