THE SMALL PARAMETER METHOD FOR REGULAR LINEAR DIFFERENTIAL EQUATIONS ON UNBOUNDED DOMAINS

被引:0
作者
Karapetyan, G. A. [1 ]
Tananyan, H. G. [1 ]
机构
[1] Russian Armenian Univ, Dept Appl Math & Informat, Yerevan, Armenia
来源
EURASIAN MATHEMATICAL JOURNAL | 2013年 / 4卷 / 02期
关键词
regular operator; hypoelliptic operator; boundary layer; regular degeneration; singular perturbation; uniform solvability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Algorithms for the asymptotic expansion of the solution to the Dirichlet problem for a regular equation with a small parameter epsilon (epsilon > 0) at higher derivatives on an unbounded domain (the whole space, the half space and a strip), based on the solution to the degenerate (as epsilon -> 0) Dirichlet problem for a regular hypoelliptic equation of the lower order, are described. Estimates for remainder terms of those expansions are obtained.
引用
收藏
页码:64 / 81
页数:18
相关论文
共 23 条
[1]  
Awrejcewicz J., 2006, INTRO ASYMPTOTIC MET, P242
[2]  
Besov O. V., 1979, INTEGRAL REPRESENTAT, V2
[3]  
Ghazaryan G. G., 1984, MAT SBORNIK, V124, P291
[4]  
Ghazaryan G. G., 1967, MAT NOTES, V2, P45
[5]  
Hormander L., 1990, ANAL LINEAR PARTIAL
[6]  
Jager E. M., 1996, APPL MATH MECH, V42
[7]  
Johnson R.S., 2005, SINGULAR PERTURBATIO
[8]   Degeneration of semielliptic equations with constant coefficients in rectangular parallelepipeds [J].
Karapetyan, G. A. ;
Tananyan, H. G. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2010, 45 (02) :82-93
[9]  
Karapetyan G. A., 1990, IZVESTIYA AN ARMSSR, V25, P192
[10]  
Mikhailov V. P., 1967, T MAT I STEKLOVA, V91, P81