DETERMINANT EXPRESSION OF SELBERG ZETA FUNCTIONS(III)

被引:9
作者
KOYAMA, SY [1 ]
机构
[1] TOKYO INST TECHNOL,DEPT MATH,MEGURO KU,TOKYO 152,JAPAN
关键词
D O I
10.2307/2048513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will prove that for PSL(2, R) and its cofinite subgroup, the Selberg zeta function is expressed by the determinant of the Laplacian. We will also give an explicit calculation in case of congruence subgroups, and deduce that the part of the determinant of the Laplacian composed of the continuous spectrum is expressed by Dirichlet L-functions.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 16 条
[1]  
Barnes E W., 1900, Q JOURN PURE APPL MA, V31, P264
[2]  
Barnes E.W., 1900, P LOND MATH SOC, V31, P358
[3]   MULTILOOP AMPLITUDES FOR THE BOSONIC POLYAKOV STRING [J].
DHOKER, E ;
PHONG, DH .
NUCLEAR PHYSICS B, 1986, 269 (01) :205-234
[4]   ON DETERMINANTS OF LAPLACIANS ON RIEMANN SURFACES [J].
DHOKER, E ;
PHONG, DH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (04) :537-545
[5]   DETERMINANTS OF LAPLACIANS ON SURFACES OF FINITE VOLUME [J].
EFRAT, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (03) :443-451
[6]   STRING THEORY PATH INTEGRAL - GENUS 2 AND HIGHER [J].
GILBERT, G .
NUCLEAR PHYSICS B, 1986, 277 (01) :102-124
[7]   THE SELBERG ZETA FUNCTION AND THE DETERMINANT OF THE LAPLACIANS [J].
KOYAMA, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1989, 65 (08) :280-283
[8]  
KOYAMA S, IN PRESS T AM MATH S
[9]   DETERMINANT EXPRESSION OF SELBERG ZETA-FUNCTIONS .1. [J].
KOYAMA, SY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) :149-168
[10]   PARABOLIC COMPONENTS OF ZETA-FUNCTIONS [J].
KUROKAWA, N .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (01) :21-24