A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs

被引:5
作者
Hasunuma, Toru [1 ]
Ishii, Toshimasa [2 ]
Ono, Hirotaka [3 ]
Uno, Yushi [4 ]
机构
[1] Univ Tokushima, Dept Math & Nat Sci, Tokushima 7708502, Japan
[2] Otaru Univ, Dept Informat & Management Sci, Otaru, Hokkaido 0478501, Japan
[3] Kyushu Univ, Dept Econ Engn, Fukuoka 8128581, Japan
[4] Osaka Prefecture Univ, Grad Sch Sci, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
关键词
(2,1)-Total labeling; Outerplanar graph; Maximum degree; Distance constrained labeling;
D O I
10.1016/j.jda.2011.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (2, 1)-total labeling of a graph G is an assignment f from the vertex set V (G) and the edge set E(G) to the set {0, 1,..., k} of nonnegative integers such that |f (x) - f (y)| >= 2 if x is a vertex and y is an edge incident to x, and |f (x) - f (y)| >= 1 if x and y are a pair of adjacent vertices or a pair of adjacent edges, for all x and y in V(G) boolean OR E(G). The (2, 1)-total labeling number lambda(T)(2) (G) of G is defined as the minimum k among all possible (2, 1)-total labelings of G. In 2007, Chen and Wang conjectured that all outerplanar graphs G satisfy lambda(T)(2) (G) <= Delta(G) + 2, where Delta(G) is the maximum degree of G. They also showed that it is true for G with Delta(G) >= 5. In this paper, we solve their conjecture, by proving that lambda(T)(2) (G) <= Delta(G) + 2, even when Delta(G) <= 4. (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:189 / 206
页数:18
相关论文
共 16 条
[1]   (d,1)-total labelling of planar graphs with large girth and high maximum degree [J].
Bazzaro, Fabrice ;
Montassier, Mickael ;
Raspaud, Andre .
DISCRETE MATHEMATICS, 2007, 307 (16) :2141-2151
[2]  
Behzad M., 1965, THESIS
[3]   The L(h, k)-labelling problem:: A survey and annotated bibliography [J].
Calamoneri, Tiziana .
COMPUTER JOURNAL, 2006, 49 (05) :585-608
[4]   (2,1)-total labelling of outerplanar graphs [J].
Chen, Dong ;
Wang, Weifan .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) :2585-2593
[5]   CHROMATIC INDEX OF OUTERPLANAR GRAPHS [J].
FIORINI, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) :35-38
[6]  
Griggs J. R., 1992, DISCRETE MATH, V5, P586, DOI DOI 10.1137/0405048
[7]  
Havet F., 2002, 4650 INRIA
[8]   (p, 1)-Total labelling of graphs [J].
Havet, Frederic ;
Yu, Min-Li .
DISCRETE MATHEMATICS, 2008, 308 (04) :496-513
[9]  
Konig D, 1915, MATH ANN, V77, P453
[10]   On (d, 1)-total numbers of graphs [J].
Lih, Ko-Wei ;
Liu, Daphne Der-Fen ;
Wang, Weifan .
DISCRETE MATHEMATICS, 2009, 309 (12) :3767-3773