Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella

被引:70
|
作者
Ponou, Josiane [1 ]
Wang, Li Pang [1 ]
Dodbiba, Gjergj [1 ]
Okaya, Katsunori [1 ]
Fujita, Toyohisa [1 ]
Mitsuhashi, Kohei [2 ]
Atarashi, Takafumi [2 ]
Satoh, Gouki [3 ]
Noda, Masayoshi [3 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Syst Innovat, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Nittetsu Min Co Ltd, Dept Res & Dev, Tokyo 1900182, Japan
[3] Panac Adv Co Ltd, Minato Ku, Tokyo 1080014, Japan
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2014年 / 2卷 / 02期
关键词
Rare earth; Biosorption; Recovery; Carbonization; Parachlorella;
D O I
10.1016/j.jece.2014.04.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The ongoing development of new advanced technologies, created increasing demands for rare earth elements (REEs) in the international market. The available conventional technologies for concentration and recovery of REEs are expensive making biosorption an efficient and low-cost technology for the recovery of REEs from aqueous solution. Thus, the biosorption and desorption of multi-component solution containing Y(III), La(III), Sm(III), Dy(III), Pr(III), Nd(III), Gd(III) were investigated using dried or 250 degrees C and 350 degrees C carbonized parachlorella. Evaluating the effect of pH with respect to contact time indicated a dependency of the system with those parameters. The optimum pH for dried and 250 degrees C carbonized parachlorella was 7 whereas 350 degrees C reaches it maximum uptake at pH 4. Rapid adsorption within the first 5 min of contact followed by a slight variation in the following 20 min characterized the sorption processes onto parachlorella by-products. The mechanism of the biosorption is explained by a combination of complex reactions occurring simultaneously in the biosorption process. In addition, desorption process has been investigated using various concentrations of HCl, HNO3, and H2SO4 at different temperatures. It was found that the reversible process is rapid, less temperature and pH dependent with high desorption percentage. Moreover, only light REEs were desorbed regardless of the kind of acid and the solution temperature. Parachlorella is found to be good and low-cost biosorbent for the recovery of above REEs from aqueous solutions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1070 / 1081
页数:12
相关论文
共 50 条
  • [31] A REVIEW ON RECOVERY OF RARE EARTH ELEMENTS FROM WET PROCESS PHOSPHORIC ACID
    Cheremisina, Olga
    Sergeev, Vasiliy
    SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING, SGEM 2015, VOL I, 2015, : 553 - 560
  • [32] Recovery of rare earth elements from permanent magnet scraps by pyrometallurgical process
    Yu-Yang Bian
    Shu-Qiang Guo
    Yu-Ling Xu
    Kai Tang
    Xiong-Gang Lu
    Wei-Zhong Ding
    Rare Metals, 2022, 41 : 1697 - 1702
  • [33] Recovery of rare earth elements from acid mine drainage by ion exchange
    Felipe, E. C. B.
    Batista, K. A.
    Ladeira, A. C. Q.
    ENVIRONMENTAL TECHNOLOGY, 2021, 42 (17) : 2721 - 2732
  • [34] Bioleaching for the recovery of rare earth elements from industrial waste: A sustainable approach
    Joshi, Khyati
    Magdouli, Sara
    Brar, Satinder Kaur
    RESOURCES CONSERVATION AND RECYCLING, 2025, 215
  • [35] Enhanced recovery of rare earth elements from waste phosphors by mechanical activation
    Tan, Quanyin
    Deng, Chao
    Li, Jinhui
    JOURNAL OF CLEANER PRODUCTION, 2017, 142 : 2187 - 2191
  • [36] Recovery of Rare Earth Elements from Waste Permanent Magnets Leach Liquors
    Jyothi, Rajesh Kumar
    Chung, Kyeong Woo
    Kim, Chul-Joo
    Yoon, Ho-Sung
    RARE METAL TECHNOLOGY 2020, 2020, : 335 - 345
  • [37] Carbon Cloth Supported Nano-Mg(OH)2 for the Enrichment and Recovery of Rare Earth Element Eu(III) From Aqueous Solution
    Li, Yinong
    Tian, Chen
    Liu, Weizhen
    Xu, Si
    Xu, Yunyun
    Cui, Rongxin
    Lin, Zhang
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [38] Recovery of rare earth elements from spent NiMH batteries using subcritical water extraction with citric acid
    Constantine, Jason
    Lie, Jenni
    Liu, Jhy-Chern
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [39] Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review
    Vo, Phong H. N.
    Danaee, Soroosh
    Hai, Ho Truong Nam
    Huy, Lai Nguyen
    Nguyen, Tuan A. H.
    Nguyen, Hong T. M.
    Kuzhiumparambil, Unnikrishnan
    Kim, Mikael
    Nghiem, Long D.
    Ralph, Peter J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908
  • [40] Recovery of rare earth elements from waste phosphors using phosphonic acid-functionalized silica adsorbent
    Artiushenko, Olena
    Rojano, Wendy S.
    Nazarkovsky, Michael
    Azevedo, Marcelo Folhadella M. F.
    Saint'Pierre, Tatiana D.
    Kai, Jiang
    Zaitsev, Volodymyr
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330