ON THE DIOPHANTINE EQUATION ax(3)

被引:1
|
作者
Subburam, Sivanarayanapandian [1 ]
Thangadurai, Ravindrananathan [2 ]
机构
[1] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[2] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
关键词
Diophantine equations; positive solutions; upper bound for solutions; divisors in residue classes;
D O I
10.7169/facm/2015.53.1.9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the diophantine equation ax(3) + by + c = xyz, where a, b and c are positive integers such that gcd (a, c) = 1 and c is square-free. Let (x, y, z) be a positive integral solution of the equation. In this paper, we shall give an upper bound for x, y and z in terms of the given inputs a, b and c. Also, we apply our results to investigate the divisors of the elements of the sequence {an(3) + c} in residue classes.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 50 条
  • [41] THE DIOPHANTINE EQUATION A4+2δB2 = Cn
    Bennett, Michael A.
    Ellenberg, Jordan S.
    Ng, Nathan C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (02) : 311 - 338
  • [42] On the Diophantine equation x2+a2=2yp
    Tengely, S
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (02): : 291 - 304
  • [43] On the Brocard–Ramanujan Diophantine Equation n! + 1 = m2
    Bruce C. Berndt
    William F. Galway
    The Ramanujan Journal, 2000, 4 : 41 - 42
  • [44] On the Diophantine equation 1k+2k +...+ xk = yn
    Bennett, MA
    Gyory, K
    Pintér, A
    COMPOSITIO MATHEMATICA, 2004, 140 (06) : 1417 - 1431
  • [45] An Algorithm for Solving a Quartic Diophantine Equation Satisfying Runge's Condition
    Osipov, N. N.
    Dalinkevich, S. D.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019), 2019, 11661 : 377 - 392
  • [46] On the Diophantine equation cyl = xp-1/x-1
    Sadek, Mohammad
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (02): : 373 - 378
  • [47] On the Diophantine equation Gn(x) = Gm(y) withQ(x, y)=0\
    Fuchs, Clemens
    Petho, Attila
    Tich, Robert F.
    DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 : 199 - +
  • [48] On the Brocard-Ramanujan diophantine equation n!+1=m2
    Berndt, BC
    Galway, WF
    RAMANUJAN JOURNAL, 2000, 4 (01) : 41 - 42
  • [49] The Korteweg-de Vries equation and a Diophantine problem related to Bernoulli polynomials
    Pinter, Akos
    Tengely, Szabolcs
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [50] An Elementary Algorithm for Solving a Diophantine Equation of Degree Four with Runge's Condition
    Osipov, Nikolai N.
    Medvedeva, Maria, I
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2019, 12 (03): : 331 - 341