Voltage-dependent variability in the shape of synaptic responses of the LDS interneuron, an identified nonspiking cell of crayfish, to mechanosensory stimulation was studied using intracellular recording and current injection techniques. Stimulation of the sensory root ipsilateral to the interneuron soma evoked a large depolarizing synaptic response. Its peak amplitude was decreased and the time course was shortened when the LDS interneuron was depolarized by current injection. When the cell was hyperpolarized, the peak amplitude was increased and the time course was prolonged. Upon large hyperpolarization, however, the amplitude did not increase further while the time course showed a slight decrease. The dendritic membrane of the LDS interneuron was found to show an outward rectification upon depolarization and an inward rectification upon large hyperpolarization. Current injection experiments at varying membrane potentials revealed that the voltage-dependent changes in the shape of the synaptic response were based on an increase in membrane conductance due to the rectifying properties of the LDS interneuron. Stimulation of the contralateral root evoked a small depolarizing potential comprising an early excitatory response and a later inhibitory component. Its shape also varied depending on the membrane potential in a manner similar to that of the synaptic response evoked ipsilaterally.