MODELING PENETRATION OF PLANT CUTICLES BY CROP PROTECTION AGENTS AND EFFECTS OF ADJUVANTS ON THEIR RATES OF PENETRATION

被引:136
作者
SCHONHERR, J
BAUR, P
机构
[1] Institut Für Obstbau Und Baumschule, Universität Hannover, Sarstedt, D-31157
来源
PESTICIDE SCIENCE | 1994年 / 42卷 / 03期
关键词
D O I
10.1002/ps.2780420308
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A theory of cuticular penetration of crop protection agents (CPAs) is presented, which incorporates properties of cuticles and cuticular waxes as well as properties of active ingredients and adjuvants. Based on this theory, two models are developed which are analytical in the sense that they help to quantify and understand (i) differences in permeability among cuticles from different species, (ii) effects of properties of CPAs on permeabilities of cuticles and rates of uptake and (iii) the effects of adjuvants on properties of cuticles and rates of uptake of CPAs. The models can be used to predict rates of uptake of CPAs as affected by properties of cuticular waxes, active ingredients and adjuvants. However, before this can be done, a constant, two parameters and at least two variables must be estimated. Properties of cuticles are accounted for by the constant D-0/Delta x and the parameter beta'. The former, the ratio of the mobility of a hypothetical molecule having zero molar volume (D-0) divided by the path length (Delta x) across the cuticle, has the dimension of velocity (m s(-1)) and is independent of the solubility of the CPA, The latter is a measure of size selectivity of the cuticle. Differences in permeabilities of cuticles from different species increase with increasing size of active ingredients due to size selectivity (beta'). Removing cuticular waxes from Citrus cuticles increased D-0/Delta x by a factor of 2042, while beta' was not affected. Differential solubility of CPAs is considered part of the driving force and at least two different partition coefficients are needed to account for differences in solubilities in cuticular waxes, cutin, water and the formulation residue on the surface of the cuticles. Adjuvants are solvents in the formulation residue on the leaf surface once the carriers (water and other volatile solvents) have evaporated and certain adjuvants also act as accelerators; they penetrate the cuticle and increase D-0/Delta x. Thus, accelerators increase rates of uptake and this effect depends on two factors, (i) the intrinsic activity of the accelerator and (ii) rate of penetration into the cuticle, because the active ingredients follow the accelerator front across the cuticle. Since accelerators penetrate from the formulation residue into the cuticle, the volume of the formulation residue decreases with time. This maintains high concentrations of CPAs in the formulation residue and, thus, maximum driving forces and rates of penetration. To utilise fully this dual accelerator effect, it is necessary to match velocities of penetration of accelerators and active ingredients accurately.
引用
收藏
页码:185 / 208
页数:24
相关论文
共 42 条
[1]   THE USE OF CHARACTERISTIC VOLUMES TO MEASURE CAVITY TERMS IN REVERSED PHASE LIQUID-CHROMATOGRAPHY [J].
ABRAHAM, MH ;
MCGOWAN, JC .
CHROMATOGRAPHIA, 1987, 23 (04) :243-246
[2]   DETERMINATION OF MOBILITIES OF ORGANIC-COMPOUNDS IN PLANT CUTICLES AND CORRELATION WITH MOLAR VOLUMES [J].
BAUER, H ;
SCHONHERR, J .
PESTICIDE SCIENCE, 1992, 35 (01) :1-11
[3]  
BAUR P, 1993, THESIS TU MUNCHEN MU
[4]   MATHEMATICAL-MODEL OF PLANT UPTAKE AND TRANSLOCATIONS OF ORGANIC-CHEMICALS - APPLICATION TO EXPERIMENTS [J].
BOERSMA, L ;
MCFARLANE, C ;
LINDSTROM, FT .
JOURNAL OF ENVIRONMENTAL QUALITY, 1991, 20 (01) :137-146
[5]  
Cussler E.L., 2009, DIFFUSION MASS TRANS, V3rd ed.
[6]   BARRIER MEMBRANES [J].
CUSSLER, EL ;
HUGHES, SE ;
WARD, WJ ;
ARIS, R .
JOURNAL OF MEMBRANE SCIENCE, 1988, 38 (02) :161-174
[7]   PHASE-TRANSITIONS IN PLANT CUTICLES [J].
ECKL, K ;
GRULER, H .
PLANTA, 1980, 150 (02) :102-113
[8]  
FIGGE K, 1985, CHEM STOFFE OKOSYSTE
[9]   PESTICIDE APPLICATION AS AFFECTED BY SPRAY MODIFIERS [J].
HALL, FR ;
CHAPPLE, AC ;
DOWNER, RA ;
KIRCHNER, LM ;
THACKER, JRM .
PESTICIDE SCIENCE, 1993, 38 (2-3) :123-133
[10]  
Holloway P. J., 1982, The plant cuticle, P45