NEW SOLUTIONS OF THE WAVE-EQUATION BY REDUCTION TO THE HEAT-EQUATION

被引:2
作者
BASARABHORWATH, P
BARANNYK, L
FUSHCHYCH, WI
机构
[1] POLTAVA PEDAG INST,DEPT MATH,POLTAVA,UKRAINE
[2] UKRAINIAN ACAD SCI,INST MATH,KIEV 252004,UKRAINE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 18期
关键词
D O I
10.1088/0305-4470/28/18/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we make a new connection between the linear wave equation and the linear heat equation. In this way we are able to construct new solutions of the linear wave equation, using symmetries and conditional symmetries of the heat equation.
引用
收藏
页码:5291 / 5304
页数:14
相关论文
共 12 条
[1]  
BASARABHORWATH P, 1994, EXACT SOLUTIONS NONL
[2]  
Bluman G. W., 1989, SYMMETRIES DIFFERENT
[3]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[4]  
BORHARDT AA, 1984, DIFF EQUAT, V20, P239
[5]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[6]  
Fushchich W.I., 1994, SYMMETRIES EQUATIONS
[7]  
Fushchich W.I., 1991, SUBGROUP ANAL GALILE
[8]   THE SYMMETRY AND SOME EXACT-SOLUTIONS OF THE NON-LINEAR MANY-DIMENSIONAL LIOUVILLE, DALEMBERT AND EIKONAL EQUATIONS [J].
FUSHCHICH, WI ;
SEROV, NI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :3645-3656
[9]  
FUSHCHICH WI, 1993, SYMMETRY ANAL EXACT
[10]  
Jacobson N., 1962, ALGEBRAS