Proton-exchange membranes based on sulfonated poly(ether ether ketone)/polyaniline blends for all- and air-vanadium redox flow battery applications

被引:39
作者
David, Oana [1 ]
Percin, Korcan [2 ]
Luo, Tao [2 ]
Gendel, Youri [1 ]
Wessling, Matthias [1 ,2 ]
机构
[1] DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52056 Aachen, Germany
[2] BRWTH Aachen Univ, Aachener Verfahrenstech Chem Proc Engn, Turmstr 46, D-52064 Aachen, Germany
关键词
Redox flow battery; Proton-exchange membrane; Polymer blend;
D O I
10.1016/j.est.2015.01.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thin and mechanically stable proton-exchange membranes with high V(IV) barrier properties and good proton conductivity have been fabricated by polymer blending of sulfonated poly(ether ether ketone) with polyaniline. V(IV) diffusion coefficient of blended membranes in a wt. ratio of 80/20 was 2.6 and 6 times lower than for pure sulfonated poly(ether ether ketone) and Nafion 112 membrane, respectively. This behaviour is assumed to be caused by a densified polymer matrix given by acid/base interactions between the two polymers. Blended membranes in a wt. ratio of 80/20 had a good proton conductivity of 54.15 mS cm (-1) and ion exchange capacity of 1.44 mmol g (-1). The membranes were also characterized in all-vanadium redox flow battery, where only slightly higher efficiencies were achieved than for pure polymer. Slow PANI degradation determines a decrease in membrane performance, reaching values close to the starting polymer (SPEEK-E600). Therefore, the application of blended membranes in the all-vanadium redox flow battery is not advantageous. However, the improved barrier properties are likely to be beneficial for their application in vanadium/air-redox flow battery in order to reduce oxygen crossover. In the latter, no V(V) ions can oxidize the blend polymer. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 35 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]   Redox flow batteries for the storage of renewable energy: A review [J].
Alotto, Piergiorgio ;
Guarnieri, Massimo ;
Moro, Federico .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 :325-335
[3]   Pervaporation studies with polyaniline membranes and blends [J].
Ball, IJ ;
Huang, SC ;
Wolf, RA ;
Shimano, JY ;
Kaner, RB .
JOURNAL OF MEMBRANE SCIENCE, 2000, 174 (02) :161-176
[4]   Processing, characterization and properties of conducting polyaniline-sulfonated SEBS block copolymers [J].
Barra, GMO ;
Jacques, LB ;
Oréfice, RL ;
Carneiro, JRG .
EUROPEAN POLYMER JOURNAL, 2004, 40 (09) :2017-2023
[5]  
Blanc C., 2010, PATHS SUSTAINABLE EN, P341
[6]   Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials [J].
Chang, JH ;
Park, JH ;
Park, GG ;
Kim, CS ;
Park, OO .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :18-25
[7]   Polyaniline membranes for the dehydration of tetrahydrofuran by pervaporation [J].
Chapman, Peter ;
Loh, X. X. ;
Livingston, A. G. ;
Li, K. ;
Oliveira, T. A. C. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 309 (1-2) :102-111
[8]   Polyaniline membranes as waterproof barriers for lithium air batteries [J].
Fu, Zhenghao ;
Wei, Zhen ;
Lin, Xiujing ;
Huang, Tao ;
Yu, Aishui .
ELECTROCHIMICA ACTA, 2012, 78 :195-199
[9]   Preparation of polyaniline asymmetric hollow fiber membranes and investigation towards gas separation performance [J].
Hasbullah, H. ;
Kumbharkar, S. ;
Ismail, A. F. ;
Li, K. .
JOURNAL OF MEMBRANE SCIENCE, 2011, 366 (1-2) :116-124
[10]  
Hosseiny SS, 2011, WOODHEAD PUBL SER EN, P413