GENERALIZED SYMMETRIES AND INTEGRALS OF MOTION FOR THE HENON-HEILES MODEL

被引:0
作者
BAUMANN, G
FREYBERGER, M
机构
[1] Abt. für Mathematische Physik, Universität Ulm, Ulm, D-7900
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1992年 / 43卷 / 03期
关键词
D O I
10.1007/BF00946249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized symmetries of the Henon-Heiles model are examined for the purpose of finding parameter values at which integrals of motion exist. In these instances, the integrals of motion can be calculated by applying the divergence theorem.
引用
收藏
页码:584 / 588
页数:5
相关论文
共 16 条
[1]   LIE GROUP SYMMETRIES AND INVARIANTS OF THE HENON-HEILES EQUATIONS [J].
ABRAHAMSHRAUNER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (07) :1627-1631
[2]  
AIZAWA Y, 1972, J PHYS SOC JPN, V32, P1636, DOI 10.1143/JPSJ.32.1636
[3]  
ANDERSON RL, 1979, BACKLUND TRANSFORMAT
[4]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[5]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[6]   PAINLEVE PROPERTY AND INTEGRALS OF MOTION FOR THE HENON-HEILES SYSTEM [J].
GRAMMATICOS, B ;
DORIZZI, B ;
PADJEN, R .
PHYSICS LETTERS A, 1982, 89 (03) :111-113
[7]   A THEORY OF EXACT AND APPROXIMATE CONFIGURATIONAL INVARIANTS [J].
HALL, LS .
PHYSICA D, 1983, 8 (1-2) :90-116
[8]  
HELLEMAN RHG, 1980, FUNDAMENTAL PROBLEMS
[9]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[10]   DIRECT METHODS FOR THE SEARCH OF THE 2ND INVARIANT [J].
HIETARINTA, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (02) :87-154